Show simple item record

hal.structure.identifierLaboratoire de Mathématiques Appliquées du Havre [LMAH]
hal.structure.identifierReformulations based algorithms for Combinatorial Optimization [Realopt]
dc.contributor.authorMICHEL, Sophie
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPERROT, Nancy
hal.structure.identifierReformulations based algorithms for Combinatorial Optimization [Realopt]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorVANDERBECK, François
dc.date.accessioned2024-04-04T02:44:12Z
dc.date.available2024-04-04T02:44:12Z
dc.date.issued2009
dc.identifier.issn0377-2217
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191390
dc.description.abstractEnKnapsack problems with setups find their application in many concrete industrial and financial problems. Moreover, they also arise as subproblems in a Dantzig-Wolfe decomposition approach to more complex combinatorial optimization problems, where they need to be solved repeatedly and therefore efficiently. Here, we consider the multiple-class integer knapsack problem with setups. Items are partitioned into classes whose use implies a setup cost and associated capacity consumption. Item weights are assumed to be a multiple of their class weight. The total weight of selected items and setups is bounded. The objective is to maximize the difference between the profits of selected items and the fixed costs incurred for setting-up classes. A special case is the bounded integer knapsack problem with setups where each class holds a single item and its continuous version where a fraction of an item can be selected while incurring a full setup. The paper shows the extent to which classical results for the knapsack problem can be generalized to these variants with setups. In particular, an extension of the branch-and-bound algorithm of Horowitz and Sahni is developed for problems with positive setup costs. Our direct approach is compared experimentally with the approach proposed in the literature consisting in converting the problem into a multiple choice knapsack with pseudo-polynomial size.
dc.language.isoen
dc.publisherElsevier
dc.subject.enKnapsack problem
dc.subject.enfixed cost
dc.subject.ensetup
dc.subject.envariable upper bound
dc.subject.enbranch-and-bound
dc.title.enKnapsack Problems with Setups
dc.typeArticle de revue
dc.subject.halInformatique [cs]/Recherche opérationnelle [cs.RO]
bordeaux.journalEuropean Journal of Operational Research
bordeaux.page909-918
bordeaux.volume196
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
bordeaux.type.reportrr
hal.identifierinria-00232782
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00232782v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=European%20Journal%20of%20Operational%20Research&rft.date=2009&rft.volume=196&rft.spage=909-918&rft.epage=909-918&rft.eissn=0377-2217&rft.issn=0377-2217&rft.au=MICHEL,%20Sophie&PERROT,%20Nancy&VANDERBECK,%20Fran%C3%A7ois&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record