Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorCADORET, Anna
dc.date.accessioned2024-04-04T02:42:28Z
dc.date.available2024-04-04T02:42:28Z
dc.date.issued2005
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191245
dc.description.abstractEnWe consider the following problem about Galois covers of P1 . Fixing their type of ramification that is, essentially, their monodromy group G and their branch locus, assumed to be defined over R, the question is how many covers are defined over R and how many are not? J.-P. Serre showed the number of all Galois covers with given ramification type can be computed from the character table of G. We re-use Serre's method of calculation in the more refined situation of Galois covers defined over R, for which there is a group-theoretic characterization due to P. D`ebes and M. Fried. We obtain explicit answers to our problem. As an application, we exhibit new families of covers not defined over their field of moduli and the monodromy group of which can be chosen arbitrarily large. We also give examples of Galois covers defined over the field Qtr of totally real algebraic numbers with Q-rational branch locus.
dc.language.isoen
dc.title.enCounting real Galois covers of the projective line
dc.typeArticle de revue
bordeaux.journalPacific Journal of Mathematics
bordeaux.page101-129
bordeaux.volume219
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00355680
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00355680v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Pacific%20Journal%20of%20Mathematics&rft.date=2005&rft.volume=219&rft.issue=1&rft.spage=101-129&rft.epage=101-129&rft.au=CADORET,%20Anna&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record