On non-autonomous fractional evolution equations and applications
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | ACHACHE, Mahdi | |
dc.date.accessioned | 2024-04-04T02:41:57Z | |
dc.date.available | 2024-04-04T02:41:57Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191196 | |
dc.description.abstractEn | We consider the problem of maximal regularity for the semilinear non-autonomous fractional equations n i=1 λ i ∂ α i (u − u 0)(t) + A(t)u(t) = F (t, u(t)), t-a.e. Here, ∂ α i denotes the Riemann-Liouville fractional derivative of order α i ∈ (0, 1) w.r.t. time and the time dependent operators A(t) : V → V ′ are associated with (time dependent) sesquilinear forms on a Hilbert space H such that V is continuously and densely embedded into H. We prove maximal L p-regularity results and other regularity properties for the solutions of the above equation under minimal regularity assumptions on the forms, the initial data u 0 and the inhomogeneous term F. | |
dc.language.iso | en | |
dc.subject.en | Fractional equations | |
dc.subject.en | maximal regularity | |
dc.subject.en | non-autonomous evolution equations | |
dc.title.en | On non-autonomous fractional evolution equations and applications | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math] | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-03602833 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03602833v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=ACHACHE,%20Mahdi&rft.genre=preprint |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |