Afficher la notice abrégée

hal.structure.identifierLaboratoire de Mathématiques d'Orsay [LMO]
dc.contributor.authorFIORILLI, Daniel
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorJOUVE, Florent
dc.date.accessioned2024-04-04T02:41:48Z
dc.date.available2024-04-04T02:41:48Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191182
dc.description.abstractEnWe study densities introduced in the works of Rubinstein-Sarnak and Ng which measure the Chebyshev bias in the distribution of Frobenius elements of prime ideals in a Galois extension of number fields. Using the Rubinstein-Sarnak framework, Ng has shown the existence of these densities and has computed several explicit examples, under the assumption of the Artin holomorphy conjecture, the Generalized Riemann Hypothesis, as well as a linear independence hypothesis on the zeros of Artin L-functions. In this paper we show the existence of an infinite family of Galois extensions L/K and associated conjugacy classes C1, C2 of Gal(L/K) for which the densities can be computed unconditionally.
dc.language.isoen
dc.title.enUNCONDITIONAL CHEBYSHEV BIASES IN NUMBER FIELDS
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-03088071
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03088071v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=FIORILLI,%20Daniel&JOUVE,%20Florent&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée