Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorHARTMANN, Andreas
hal.structure.identifierDepartament de Matematiques i Informatica, Universitat de Barcelona
dc.contributor.authorMASSANEDA, Xavier
dc.date.accessioned2024-04-04T02:40:54Z
dc.date.available2024-04-04T02:40:54Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191102
dc.description.abstractEnWe investigate different geometrical properties of the inhomogeneous Poisson point process $\Lambda_{\mu}$ associated to a positive, locally finite, $\sigma$-finite measure $\mu$ on the unit disk. In particular, we characterize the processes $\Lambda_{\mu}$ such that almost surely: 1) $\Lambda_{\mu}$ is a Carleson-Newman sequence; 2) $\Lambda_{\mu}$ is the union of a given number M of separated sequences. We use these results to discuss the measures $\mu$ such that the associated process $\Lambda_{\mu}$ is almost surely an interpolating sequence for the Hardy, Bloch or weighted Dirichlet spaces.
dc.language.isoen
dc.title.enInhomogeneous Poisson processes in the disk and interpolation
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
dc.identifier.arxiv2207.10319
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-03728142
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03728142v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=HARTMANN,%20Andreas&MASSANEDA,%20Xavier&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée