Afficher la notice abrégée

hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorBELLEZZA, Giulia
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorCOUÉGNAT, Guillaume
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorRICCHIUTO, Mario
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorVIGNOLES, Gérard L.
dc.date.accessioned2024-04-04T02:40:46Z
dc.date.available2024-04-04T02:40:46Z
dc.date.issued2022-07
dc.identifier.issn0955-2219
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191091
dc.description.abstractEnWe propose a multi-physics numerical model for a self-healing ceramic matrix mini-composite under tensile load. Crack averaged PDEs are proposed for the transport of oxygen and of all the chemical species involved in the healing process and studied in the dimensionless form to perform the most appropriate discretization choices concerning time integration, and boundary conditions. Concerning the fibres’ degradation, a slow crack growth model explicitly dependent on the environmental parameters is calibrated using a particular exact solution and integrated numerically in the general case. The tow failure results from the statistical distribution of the fibres’ initial strength, the slow crack growth kinetics, and the load transfer following fibres breakage. The lifetime prediction capabilities of the model, as well as the effect of temperature, spatial variation of the statistical distribution of fibres strength, and applied load, are investigated highlighting the influence of the diffusion/reaction processes (healing) on the fibre breakage scenarios.
dc.description.sponsorshipComposites Auto-Cicatrisants Virtuels pour la Propulsion Aéronautique - ANR-17-CE08-0030
dc.language.isoen
dc.publisherElsevier
dc.subject.enceramic-matrix composites
dc.subject.enself-healing
dc.subject.enslow crack growth
dc.subject.enimage-based modelling
dc.title.enA 2D image-based multiphysics model for lifetime evaluation and failure scenario analysis of self-healing ceramic-matrix mini-composites under a tensile load
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jeurceramsoc.2022.07.037
dc.subject.halInformatique [cs]/Modélisation et simulation
bordeaux.journalJournal of the European Ceramic Society
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03741298
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03741298v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.date=2022-07&rft.eissn=0955-2219&rft.issn=0955-2219&rft.au=BELLEZZA,%20Giulia&COU%C3%89GNAT,%20Guillaume&RICCHIUTO,%20Mario&VIGNOLES,%20G%C3%A9rard%20L.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée