Microscopic tridomain model of electrical activity in the heart with dynamical gap junctions. Part 2 – Derivation of the macroscopic tridomain model by unfolding homogenization method
hal.structure.identifier | Institut de Recherche Mathématique de Rennes [IRMAR] | |
dc.contributor.author | BADER, Fakhrielddine | |
hal.structure.identifier | Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BENDAHMANE, Mostafa | |
hal.structure.identifier | Laboratoire de Mathématiques Jean Leray [LMJL] | |
dc.contributor.author | SAAD, Mazen | |
hal.structure.identifier | École Supérieure d'Ingénierie Léonard de Vinci [ESILV] | |
hal.structure.identifier | Ecole Doctorale des Sciences et de la Technologie [EDST] | |
dc.contributor.author | TALHOUK, Raafat | |
dc.date.accessioned | 2024-04-04T02:40:32Z | |
dc.date.available | 2024-04-04T02:40:32Z | |
dc.date.issued | 2022-09-08 | |
dc.identifier.issn | 0921-7134 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191070 | |
dc.description.abstractEn | We study the homogenization of a novel microscopic tridomain system, allowing for a more detailed analysis of the properties of cardiac conduction than the classical bidomain and monodomain models. In (Acta Appl.Math. 179 (2022) 1–35), we detail this model in which gap junctions are considered as the connections between adjacent cells in cardiac muscle and could serve as alternative or supporting pathways for cell-to-cell electrical signal propagation. Departing from this microscopic cellular model, we apply the periodic unfolding method to derive the macroscopic tridomain model. Several difficulties prevent the application of unfolding homogenization results, including the degenerate temporal structure of the tridomain equations and a nonlinear dynamic boundary condition on the cellular membrane. To prove the convergence of the nonlinear terms, especially those defined on the microscopic interface, we use the boundary unfolding operator and a Kolmogorov–Riesz compactness’s result. | |
dc.description.sponsorship | Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020 | |
dc.language.iso | en | |
dc.publisher | IOS Press | |
dc.subject.en | Tridomain model | |
dc.subject.en | reaction-diffusion system | |
dc.subject.en | homogenization theory | |
dc.subject.en | time-periodic unfolding method | |
dc.subject.en | gap junctions | |
dc.subject.en | cardiac electric field | |
dc.title.en | Microscopic tridomain model of electrical activity in the heart with dynamical gap junctions. Part 2 – Derivation of the macroscopic tridomain model by unfolding homogenization method | |
dc.type | Article de revue | |
dc.identifier.doi | 10.3233/ASY-221804 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.identifier.arxiv | 2209.07169 | |
bordeaux.journal | Asymptotic Analysis | |
bordeaux.page | 1-32 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03776998 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03776998v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Asymptotic%20Analysis&rft.date=2022-09-08&rft.spage=1-32&rft.epage=1-32&rft.eissn=0921-7134&rft.issn=0921-7134&rft.au=BADER,%20Fakhrielddine&BENDAHMANE,%20Mostafa&SAAD,%20Mazen&TALHOUK,%20Raafat&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |