Microscopic tridomain model of electrical activity in the heart with dynamical gap junctions. Part 2 – Derivation of the macroscopic tridomain model by unfolding homogenization method
BENDAHMANE, Mostafa
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Voir plus >
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
BENDAHMANE, Mostafa
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
TALHOUK, Raafat
École Supérieure d'Ingénierie Léonard de Vinci [ESILV]
Ecole Doctorale des Sciences et de la Technologie [EDST]
< Réduire
École Supérieure d'Ingénierie Léonard de Vinci [ESILV]
Ecole Doctorale des Sciences et de la Technologie [EDST]
Langue
en
Article de revue
Ce document a été publié dans
Asymptotic Analysis. 2022-09-08p. 1-32
IOS Press
Résumé en anglais
We study the homogenization of a novel microscopic tridomain system, allowing for a more detailed analysis of the properties of cardiac conduction than the classical bidomain and monodomain models. In (Acta Appl.Math. 179 ...Lire la suite >
We study the homogenization of a novel microscopic tridomain system, allowing for a more detailed analysis of the properties of cardiac conduction than the classical bidomain and monodomain models. In (Acta Appl.Math. 179 (2022) 1–35), we detail this model in which gap junctions are considered as the connections between adjacent cells in cardiac muscle and could serve as alternative or supporting pathways for cell-to-cell electrical signal propagation. Departing from this microscopic cellular model, we apply the periodic unfolding method to derive the macroscopic tridomain model. Several difficulties prevent the application of unfolding homogenization results, including the degenerate temporal structure of the tridomain equations and a nonlinear dynamic boundary condition on the cellular membrane. To prove the convergence of the nonlinear terms, especially those defined on the microscopic interface, we use the boundary unfolding operator and a Kolmogorov–Riesz compactness’s result.< Réduire
Mots clés en anglais
Tridomain model
reaction-diffusion system
homogenization theory
time-periodic unfolding method
gap junctions
cardiac electric field
Project ANR
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Origine
Importé de halUnités de recherche