Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBONY, Jean Francois
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorHÄFNER, Dietrich
dc.date.accessioned2024-04-04T02:39:32Z
dc.date.available2024-04-04T02:39:32Z
dc.date.created2008
dc.date.issued2010
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190977
dc.description.abstractEnWe consider the quadratically semilinear wave equation on R^d, d>=3, equipped with a Riemannian metric. This metric is non-trapping and approaches the Euclidean metric polynomially at infinity. Using Mourre estimates and the Kato theory of smoothness, we obtain a Keel-Smith-Sogge type inequality for the linear equation. Thanks to this estimate, we prove long time existence (d=3) and global existence (d>3) for the nonlinear problem with small initial data.
dc.description.sponsorshipEquations hyperboliques dans des espaces-temps de la relativité générale : diffusion et résonances. - ANR-05-JCJC-0087
dc.language.isoen
dc.title.enThe semilinear wave equation on asymptotically euclidean manifolds
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Physique mathématique [math-ph]
dc.subject.halPhysique [physics]/Physique mathématique [math-ph]
bordeaux.journalComm. Partial Differential Equations
bordeaux.page23-67
bordeaux.volume35
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00384722
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00384722v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Comm.%20Partial%20Differential%20Equations&rft.date=2010&rft.volume=35&rft.issue=1&rft.spage=23-67&rft.epage=23-67&rft.au=BONY,%20Jean%20Francois&H%C3%84FNER,%20Dietrich&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record