Mostrar el registro sencillo del ítem
Large genus asymptotic geometry of random square-tiled surfaces and of random multicurves
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
hal.structure.identifier | Centre National de la Recherche Scientifique [CNRS] | |
dc.contributor.author | DELECROIX, Vincent | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | GOUJARD, Élise | |
hal.structure.identifier | Euler International Mathematical Institute [St. Petersburg] | |
dc.contributor.author | ZOGRAF, Peter | |
hal.structure.identifier | Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)] | |
dc.contributor.author | ZORICH, Anton | |
dc.date.accessioned | 2024-04-04T02:38:42Z | |
dc.date.available | 2024-04-04T02:38:42Z | |
dc.date.issued | 2022-10 | |
dc.identifier.issn | 0020-9910 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190899 | |
dc.description.abstractEn | Abstract The volume $\mathcal {B}_{\Sigma }^{\textrm {comb}}({\mathbb {G}})$ of the unit ball—with respect to the combinatorial length function $\ell _{{\mathbb {G}}}$—of the space of measured foliations on a stable bordered surface $\Sigma $ appears as the prefactor of the polynomial growth of the number of multicurves on $\Sigma $. We find the range of $s \in {\mathbb {R}}$ for which $(\mathcal {B}_{\Sigma }^{\textrm {comb}})^{s}$, as a function over the combinatorial moduli spaces, is integrable with respect to the Kontsevich measure. The results depend on the topology of $\Sigma $, in contrast with the situation for hyperbolic surfaces where [6] recently proved an optimal square integrability. | |
dc.description.sponsorship | physique mathématique - ANR-19-CE40-0021 | |
dc.description.sponsorship | Espaces de modules de différentielles: surfaces plates et interactions - ANR-19-CE40-0003 | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.title.en | Large genus asymptotic geometry of random square-tiled surfaces and of random multicurves | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s00222-022-01123-y | |
dc.subject.hal | Mathématiques [math] | |
dc.identifier.arxiv | 2007.04740 | |
bordeaux.journal | Inventiones Mathematicae | |
bordeaux.page | 123-224 | |
bordeaux.volume | 230 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 1 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03862245 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03862245v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Inventiones%20Mathematicae&rft.date=2022-10&rft.volume=230&rft.issue=1&rft.spage=123-224&rft.epage=123-224&rft.eissn=0020-9910&rft.issn=0020-9910&rft.au=DELECROIX,%20Vincent&GOUJARD,%20%C3%89lise&ZOGRAF,%20Peter&ZORICH,%20Anton&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |