Counting integral points of bounded height on varieties with large fundamental group
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BRUNEBARBE, Yohan | |
hal.structure.identifier | Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)] | |
dc.contributor.author | MACULAN, Marco | |
dc.date.accessioned | 2024-04-04T02:38:36Z | |
dc.date.available | 2024-04-04T02:38:36Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190891 | |
dc.description.abstractEn | The present note is devoted to an amendment to a recent paper of Ellenberg, Lawrence and Venkatesh. Roughly speaking, the main result here states the subpolynomial growth of the number of integral points with bounded height of a variety over a number field whose fundamental group is large. Such an improvement, i.e. requiring large fundamental group as opposed to the existence of a geometric variation of pure Hodge structures, was already asked in op.cit.. | |
dc.language.iso | en | |
dc.title.en | Counting integral points of bounded height on varieties with large fundamental group | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math] | |
dc.identifier.arxiv | 2205.05436 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-03863899 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03863899v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BRUNEBARBE,%20Yohan&MACULAN,%20Marco&rft.genre=preprint |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |