PONTRYAGIN DUALITY FOR VARIETIES OVER p-ADIC FIELDS
hal.structure.identifier | Department of Mathematics [Rikkyo] | |
dc.contributor.author | GEISSER, Thomas | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MORIN, Baptiste | |
dc.date | 2022 | |
dc.date.accessioned | 2024-04-04T02:38:25Z | |
dc.date.available | 2024-04-04T02:38:25Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 1474-7480 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190876 | |
dc.description.abstractEn | We define cohomological complexes of locally compact abelian groups associated with varieties over p-adic fields and prove a duality theorem under some assumption. Our duality takes the form of Pontryagin duality between locally compact motivic cohomology groups. | |
dc.language.iso | en | |
dc.publisher | Cambridge University Press (CUP) | |
dc.subject.en | 2010 Mathematics Subject Classification. Primary: 14F42 | |
dc.subject.en | Duality | |
dc.subject.en | Local fields | |
dc.title.en | PONTRYAGIN DUALITY FOR VARIETIES OVER p-ADIC FIELDS | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math] | |
bordeaux.journal | Journal of the Institute of Mathematics of Jussieu | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03429196 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03429196v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.date=2022&rft.eissn=1474-7480&rft.issn=1474-7480&rft.au=GEISSER,%20Thomas&MORIN,%20Baptiste&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |