Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorJOUVE, Florent
dc.date.accessioned2024-04-04T02:37:50Z
dc.date.available2024-04-04T02:37:50Z
dc.date.created2009-03-23
dc.date.issued2009-05-21
dc.identifier.issn1073-7928
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190834
dc.description.abstractEnWe give a quantitative version of a result due to N. Katz about L-functions of elliptic curves over function fields over finite fields. Roughly speaking, Katz's Theorem states that, on average over a suitably chosen algebraic family, the L-function of an elliptic curve over a function field becomes "as irreducible as possible" when seen as a polynomial with rational coefficients, as the cardinality of the field of constants grows. A quantitative refinement is obtained as a corollary of our main result which gives an estimate for the proportion of elliptic curves studied whose L-functions have "maximal" Galois group . To do so we make use of E. Kowalski's idea to apply large sieve methods in algebro-geometric contexts. Besides large sieve techniques, we use results of C. Hall on finite orthogonal monodromy and previous work of the author on orthogonal groups over finite fields.
dc.language.isoen
dc.publisherOxford University Press (OUP)
dc.title.enMaximal Galois group of L-functions of elliptic curves
dc.typeArticle de revue
dc.identifier.doi10.1093/imrn/rnp066
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv0903.3898
bordeaux.journalInternational Mathematics Research Notices
bordeaux.page?
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00387291
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00387291v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Mathematics%20Research%20Notices&rft.date=2009-05-21&rft.spage=?&rft.epage=?&rft.eissn=1073-7928&rft.issn=1073-7928&rft.au=JOUVE,%20Florent&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record