Model order reduction strategies for weakly dispersive waves
hal.structure.identifier | SISSA MathLab [Trieste] | |
dc.contributor.author | TORLO, Davide | |
hal.structure.identifier | Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM] | |
dc.contributor.author | RICCHIUTO, Mario | |
dc.date.accessioned | 2024-04-04T02:37:23Z | |
dc.date.available | 2024-04-04T02:37:23Z | |
dc.date.created | 2023 | |
dc.date.issued | 2023 | |
dc.identifier.issn | 0378-4754 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190796 | |
dc.description.abstractEn | We focus on the numerical modelling of water waves by means of depth averaged models. We consider in particular PDE systems which consist in a nonlinear hyperbolic model plus a linear dispersive perturbation involving an elliptic operator. We propose two strategies to construct reduced order models for these problems, with the main focus being the control of the overhead related to the inversion of the elliptic operators, as well as the robustness with respect to variations of the flow parameters. In a first approach, only a linear reduction strategies is applied only to the elliptic component, while the computations of the nonlinear fluxes are still performed explicitly. This hybrid approach, referred to as pdROM, is compared to a hyper-reduction strategy based on the empirical interpolation method to reduce also the nonlinear fluxes. We evaluate the two approaches on a variety of benchmarks involving a generalized variant of the BBM-KdV model with a variable bottom, and a one-dimensional enhanced weakly dispersive shallow water system. The results show the potential of both approaches in terms of cost reduction, with a clear advantage for the pdROM in terms of robustness, and for the EIMROM in terms of cost reduction. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.mesh | model order reduction | |
dc.subject.mesh | dispersive wave equations | |
dc.subject.mesh | BBM-KdV | |
dc.subject.mesh | Boussinesq | |
dc.subject.mesh | hyper-reduction | |
dc.title.en | Model order reduction strategies for weakly dispersive waves | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.matcom.2022.10.034 | |
dc.subject.hal | Informatique [cs]/Modélisation et simulation | |
dc.identifier.arxiv | 2112.10608 | |
bordeaux.journal | Mathematics and Computers in Simulation | |
bordeaux.page | 997-1028 | |
bordeaux.volume | 205 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03508460 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03508460v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematics%20and%20Computers%20in%20Simulation&rft.date=2023&rft.volume=205&rft.spage=997-1028&rft.epage=997-1028&rft.eissn=0378-4754&rft.issn=0378-4754&rft.au=TORLO,%20Davide&RICCHIUTO,%20Mario&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |