Data-driven wall models for Reynolds Averaged Navier-Stokes simulations
hal.structure.identifier | DAAA, ONERA, Université Paris Saclay [Meudon] | |
hal.structure.identifier | Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS] | |
dc.contributor.author | ROMANELLI, Michele | |
hal.structure.identifier | DAAA, ONERA, Université Paris Saclay [Meudon] | |
dc.contributor.author | BENEDDINE, Samir | |
hal.structure.identifier | DAAA, ONERA, Université Paris-Saclay [Châtillon] | |
dc.contributor.author | MARY, Ivan | |
hal.structure.identifier | Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BEAUGENDRE, Heloise | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS] | |
dc.contributor.author | BERGMANN, Michel | |
hal.structure.identifier | DAAA, ONERA, Université Paris Saclay [Meudon] | |
dc.contributor.author | SIPP, Denis | |
dc.date.issued | 2023-01-02 | |
dc.identifier.issn | 0142-727X | |
dc.description.abstractEn | This article presents a data-based methodology to build Reynolds-Averaged Navier-Stokes (RANS) wall models for aerodynamic simulations at low Mach numbers. Like classical approaches, the model is based on nondimensional local quantities derived from the wall friction velocity u τ , the wall viscosity µ w , and the wall density ρ w. A fully-connected neural network approximates the relation u + = f (y + , p +). We consider reference data (obtained with RANS simulations based on fine meshes up to the wall) of attached turbulent flows at various Reynolds numbers over different geometries of bumps, covering a range of wall pressure gradients. After training the neural networks on a subset of the reference data, the paper assesses their ability to accurately recover data for unseen conditions on meshes that have been trimmed from the wall up to an interface height where the learned wall law is applied. The network's interpolation and extrapolation capabilities are quantified and carefully examined. Overall, when tested within its interpolation and extrapolation capabilities, the neural network model shows good robustness and accuracy. The global error on the skin friction coefficient is a few percent and behaves consistently over all the considered test cases. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | wall model machine learning RANS neural network | |
dc.subject.en | wall model | |
dc.subject.en | machine learning | |
dc.subject.en | RANS | |
dc.subject.en | neural network | |
dc.title.en | Data-driven wall models for Reynolds Averaged Navier-Stokes simulations | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.ijheatfluidflow.2022.109097 | |
dc.subject.hal | Physique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph] | |
bordeaux.journal | International Journal of Heat and Fluid Flow | |
bordeaux.page | 109097 | |
bordeaux.volume | 99 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03918157 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03918157v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Heat%20and%20Fluid%20Flow&rft.date=2023-01-02&rft.volume=99&rft.spage=109097&rft.epage=109097&rft.eissn=0142-727X&rft.issn=0142-727X&rft.au=ROMANELLI,%20Michele&BENEDDINE,%20Samir&MARY,%20Ivan&BEAUGENDRE,%20Heloise&BERGMANN,%20Michel&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |