SCOTCH and SODA: A Transformer Video Shadow Detection Framework
hal.structure.identifier | Department of Applied Mathematics and Theoretical Physics [Cambridge] [DAMTP] | |
dc.contributor.author | LIU, Lihao | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | PROST, Jean | |
hal.structure.identifier | Electronic and Computer Engineering Department [Hong Kong] [ECE] | |
dc.contributor.author | ZHU, Lei | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | PAPADAKIS, Nicolas | |
hal.structure.identifier | Department of Applied Mathematics and Theoretical Physics [Cambridge] [DAMTP] | |
dc.contributor.author | LIÒ, Pietro | |
hal.structure.identifier | Department of Applied Mathematics and Theoretical Physics [Cambridge] [DAMTP] | |
dc.contributor.author | SCHÖNLIEB, Carola-Bibiane | |
hal.structure.identifier | Department of Applied Mathematics and Theoretical Physics [Cambridge] [DAMTP] | |
dc.contributor.author | AVILES-RIVERO, Angelica I | |
dc.date.accessioned | 2024-04-04T02:35:55Z | |
dc.date.available | 2024-04-04T02:35:55Z | |
dc.date.issued | 2022-11-13 | |
dc.date.conference | 2023-06-18 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190684 | |
dc.description.abstractEn | Shadows in videos are difficult to detect because of the large shadow deformation between frames. In this work, we argue that accounting for the shadow deformation is essential when designing a video shadow detection method. To this end, we introduce the shadow deformation attention trajectory (SODA), a new type of video self-attention module, specially designed to handle the large shadow deformations in videos. Moreover, we present a shadow contrastive learning mechanism (SCOTCH) which aims at guiding the network to learn a high-level representation of shadows, unified across different videos. We demonstrate empirically the effectiveness of our two contributions in an ablation study. Furthermore, we show that SCOTCH and SODA significantly outperforms existing techniques for video shadow detection. Code will be available upon the acceptance of this work. | |
dc.language.iso | en | |
dc.title.en | SCOTCH and SODA: A Transformer Video Shadow Detection Framework | |
dc.type | Communication dans un congrès | |
dc.subject.hal | Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV] | |
dc.identifier.arxiv | 2211.06885 | |
dc.description.sponsorshipEurope | Nonlocal Methods for Arbitrary Data Sources | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.conference.title | IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR'23) | |
bordeaux.country | CA | |
bordeaux.conference.city | Vancouver | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03944252 | |
hal.version | 1 | |
hal.proceedings | oui | |
hal.conference.end | 2023-06-22 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03944252v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2022-11-13&rft.au=LIU,%20Lihao&PROST,%20Jean&ZHU,%20Lei&PAPADAKIS,%20Nicolas&LI%C3%92,%20Pietro&rft.genre=unknown |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |