Gallot-Tanno theorem for closed incomplete pseudo-Riemannian manifolds and application.
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MOUNOUD, Pierre | |
dc.date.accessioned | 2024-04-04T02:35:03Z | |
dc.date.available | 2024-04-04T02:35:03Z | |
dc.date.created | 2009-07-10 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190601 | |
dc.description.abstractEn | In this article we extend the Gallot-Tanno theorem to closed pseudo-Riemannian manifolds. It is done by showing that if the cone over such a manifold admits a parallel symmetric $2$-tensor then it is incomplete and has non zero constant curvature. An application of this result to the existence of metrics with distinct Levi-Civita connections but having the same unparametrized geodesics is given. | |
dc.language.iso | en | |
dc.subject.en | cone manifold | |
dc.subject.en | parallel tensor | |
dc.subject.en | projective Lichnerowicz conjecture | |
dc.title.en | Gallot-Tanno theorem for closed incomplete pseudo-Riemannian manifolds and application. | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Géométrie différentielle [math.DG] | |
dc.identifier.arxiv | 0907.1889 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-00403620 | |
hal.version | 1 | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00403620v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=MOUNOUD,%20Pierre&rft.genre=preprint |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |