Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorCIAVOLELLA, Giorgia
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorGRANET, Julien
hal.structure.identifierEquipe labellisée Ligue contre le Cancer
hal.structure.identifierImmuno-Rhumatologie Moléculaire [IRM]
dc.contributor.authorGOETZ, Jacky
hal.structure.identifierEquipe labellisée Ligue contre le Cancer
hal.structure.identifierImmuno-Rhumatologie Moléculaire [IRM]
dc.contributor.authorOSMANI, Nael
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorETCHEGARAY, Christèle
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorCOLLIN, Annabelle
dc.date.accessioned2024-04-04T02:32:58Z
dc.date.available2024-04-04T02:32:58Z
dc.date.issued2023-10-20
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190433
dc.description.abstractEnMetastatic spread is a crucial process in which some questions remain unanswered. In this work, we focus on tumor cells circulating in the bloodstream, so-called Circulating Tumor Cells (CTCs). We aim to characterize their trajectories under the influence of hemodynamic forces and adhesion forces resulting from interaction with an endothelial layer using in vitro measurements performed with a microfluidic device. This essential step in tumor spread precedes intravascular arrest and metastatic extravasation. Our strategy is based on a differential equation model - a Poiseuille model for the fluid velocity and an ODE system for the cell adhesion model - and allows us to separate the two phenomena underlying cell motion: transport of the cell through the fluid and adhesion to the endothelial layer. A robust calibration procedure enables us to characterize the dynamics. Our strategy reveals the expected role of the glycoprotein CD44 compared to the integrin ITGB1 in the deceleration of CTCs and quantifies the strong impact of the fluid velocity in the protein binding.
dc.language.isoen
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enDifferential equation
dc.subject.enParameter estimation
dc.subject.enCirculating tumor cells
dc.subject.enBiological data
dc.title.enDeciphering circulating tumor cells binding in a microfluidic system thanks to a parameterized mathematical model
dc.typeDocument de travail - Pré-publication
dc.identifier.doi10.1101/2023.10.18.562910
dc.subject.halMathématiques [math]/Mathématiques générales [math.GM]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-04253803
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04253803v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2023-10-20&rft.au=CIAVOLELLA,%20Giorgia&GRANET,%20Julien&GOETZ,%20Jacky&OSMANI,%20Nael&ETCHEGARAY,%20Christ%C3%A8le&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record