Afficher la notice abrégée

dc.contributor.authorBARKER, Tobias
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPRANGE, Christophe
dc.date.accessioned2024-04-04T02:32:07Z
dc.date.available2024-04-04T02:32:07Z
dc.date.issued2021-06-14
dc.identifier.issn0010-3616
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190357
dc.description.abstractEnThis paper is concerned with quantitative estimates for the Navier-Stokes equations. First we investigate the relation of quantitative bounds to the behaviour of critical norms near a potential singularity with Type I bound $\|u\|_{L^{\infty}_{t}L^{3,\infty}_{x}}\leq M$. Namely, we show that if $T^*$ is a first blow-up time and $(0,T^*)$ is a singular point then $$\|u(\cdot,t)\|_{L^{3}(B_{0}(R))}\geq C(M)\log\Big(\frac{1}{T^*-t}\Big),\,\,\,\,\,\,R=O((T^*-t)^{\frac{1}{2}-}).$$ We demonstrate that this potential blow-up rate is optimal for a certain class of potential non-zero backward discretely self-similar solutions. Second, we quantify the result of Seregin (2012), which says that if $u$ is a smooth finite-energy solution to the Navier-Stokes equations on $\mathbb{R}^3\times (0,1)$ with $$\sup_{n}\|u(\cdot,t_{(n)})\|_{L^{3}(\mathbb{R}^3)}<\infty\,\,\,\textrm{and}\,\,\,t_{(n)}\uparrow 1,$$ then $u$ does not blow-up at $t=1$. To prove our results we develop a new strategy for proving quantitative bounds for the Navier-Stokes equations. This hinges on local-in-space smoothing results (near the initial time) established by Jia and \v{S}ver\'{a}k (2014), together with quantitative arguments using Carleman inequalities given by Tao (2019).
dc.description.sponsorshipBords, oscillations et couches limites dans les systèmes différentiels - ANR-16-CE40-0027
dc.description.sponsorshipEcoulements avec singularités : couches limites, filaments de vortex, interaction vague-structure - ANR-18-CE40-0027
dc.language.isoen
dc.publisherSpringer Verlag
dc.title.enQuantitative regularity for the Navier-Stokes equations via spatial concentration
dc.typeArticle de revue
dc.identifier.doi10.1007/s00220-021-04122-x
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.identifier.arxiv2003.06717
bordeaux.journalCommunications in Mathematical Physics
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02509766
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02509766v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Communications%20in%20Mathematical%20Physics&amp;rft.date=2021-06-14&amp;rft.eissn=0010-3616&amp;rft.issn=0010-3616&amp;rft.au=BARKER,%20Tobias&amp;PRANGE,%20Christophe&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée