Some remarks on the qualitative properties of solutions to a predator–prey model posed on non coincident spatial domains
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS] | |
dc.contributor.author | DUCROT, Arnaud | |
hal.structure.identifier | Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS] | |
dc.contributor.author | GUYONNE, Vincent | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS] | |
dc.contributor.author | LANGLAIS, Michel | |
dc.date.accessioned | 2024-04-04T02:28:04Z | |
dc.date.available | 2024-04-04T02:28:04Z | |
dc.date.created | 2009-02 | |
dc.date.issued | 2011-02 | |
dc.identifier.issn | 1937-1632 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190067 | |
dc.description.abstractEn | We are interested in the dynamical behaviour of the solution set to a two component reaction–diffusion system posed on non coincident spatial do- mains. The underlying biological problem is a predator–prey system featuring a non local numerical response to predation involving an integral kernel. Quite interesting while complex dynamics emerge from preliminary numerical simu- lations, driven both by diffusivities and by the parametric form or shape of the integral kernel. We consider a simplified version of this problem, with constant coefficients, and give some hints on the large time dynamics of solutions. | |
dc.language.iso | en | |
dc.publisher | American Institute of Mathematical Sciences | |
dc.subject.en | Reaction-Diffusion system | |
dc.subject.en | non-coincident spatial domains | |
dc.subject.en | stationary solutions | |
dc.subject.en | degree theory | |
dc.subject.en | persistence | |
dc.title.en | Some remarks on the qualitative properties of solutions to a predator–prey model posed on non coincident spatial domains | |
dc.type | Article de revue | |
dc.identifier.doi | 10.3934/dcdss.2011.4.67 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Sciences du Vivant [q-bio]/Ecologie, Environnement/Ecosystèmes | |
bordeaux.journal | Discrete and Continuous Dynamical Systems - Series S | |
bordeaux.page | 67-82 | |
bordeaux.volume | 4 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 1 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00541302 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00541302v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Discrete%20and%20Continuous%20Dynamical%20Systems%20-%20Series%20S&rft.date=2011-02&rft.volume=4&rft.issue=1&rft.spage=67-82&rft.epage=67-82&rft.eissn=1937-1632&rft.issn=1937-1632&rft.au=DUCROT,%20Arnaud&GUYONNE,%20Vincent&LANGLAIS,%20Michel&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |