Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorCHRÉTIEN, Pierre
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMATIGNON, Michel
dc.date.accessioned2024-04-04T02:26:39Z
dc.date.available2024-04-04T02:26:39Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189968
dc.description.abstractEnLet $R$ be a complete discrete valuation ring of mixed characteristic $(0,p)$ with fraction field $K$. We study stable models of $p$-cyclic covers of $\Proj_K$. First, we determine the monodromy extension, the monodromy group, its filtration and the Swan conductor for special covers of arbitrarily high genus with potential good reduction. In the case $p=2$ we consider hyperelliptic curves of genus $2$.
dc.language.isoen
dc.title.enMaximal monodromy in unequal characteristic
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Géométrie algébrique [math.AG]
dc.identifier.arxiv1110.1960
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00630159
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00630159v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=CHR%C3%89TIEN,%20Pierre&MATIGNON,%20Michel&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record