The closed knight tour problem in higher dimensions
hal.structure.identifier | Computer Science Department [Bristol] | |
dc.contributor.author | GOLENIA, Bruno | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | GOLENIA, Sylvain | |
hal.structure.identifier | Department of Pure Mathematics and Mathematical Statistics [DPMMS] | |
dc.contributor.author | ERDE, Joshua | |
dc.date.accessioned | 2024-04-04T02:25:14Z | |
dc.date.available | 2024-04-04T02:25:14Z | |
dc.date.created | 2012-02-23 | |
dc.date.issued | 2012 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189870 | |
dc.description.abstractEn | The problem of existence of closed knight tours for rectangular chessboards was solved by Schwenk in 1991. Last year, in 2011, DeMaio and Mathew provide an extension of this result for $3$-dimensional rectangular boards. In this article, we give the solution for $n$-dimensional rectangular boards, for $n\geq 4$. | |
dc.language.iso | en | |
dc.publisher | Open Journal Systems | |
dc.subject.en | Chessboard | |
dc.subject.en | Hamiltonian cycle | |
dc.title.en | The closed knight tour problem in higher dimensions | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Combinatoire [math.CO] | |
dc.identifier.arxiv | 1202.5291 | |
bordeaux.journal | The Electronic Journal of Combinatorics | |
bordeaux.page | Volume 19, Issue 4 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00673397 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00673397v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Electronic%20Journal%20of%20Combinatorics&rft.date=2012&rft.spage=Volume%2019,%20Issue%204&rft.epage=Volume%2019,%20Issue%204&rft.au=GOLENIA,%20Bruno&GOLENIA,%20Sylvain&ERDE,%20Joshua&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |