Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDUCROT, Arnaud
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorLANGLAIS, Michel
dc.date.accessioned2024-04-04T02:24:57Z
dc.date.available2024-04-04T02:24:57Z
dc.date.created2011
dc.date.issued2012
dc.identifier.issn0022-0396
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189850
dc.description.abstractEnWe consider a singular reaction-diffusion system arising in modelling prey-predator interactions in a fragile environment. Since the underlying ODEs system exhibits a complex dynamics including possible finite time quenching, one first provides a suitable notion of global travelling wave weak solution. Then our study focusses on the existence of travelling waves solutions for predator invasion in such environments. We devise a regularized problem to prove the existence of travelling wave solutions for predator invasion followed by a possible co-extinction tail for both species. Under suitable assumptions on the diffusion coefficients and on species growth rates we show that travelling wave solutions are actually positive on a half line and identically zero elsewhere, such a property arising for every admissible wave speeds.
dc.language.isoen
dc.publisherElsevier
dc.subject.enSingular reaction-diffusion system \sep Travelling waves \sep Finite time extinction
dc.title.enA singular reaction-diffusion system modelling prey-predator interactions : Invasion and co-extinction waves
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jde.2012.04.005
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalJournal of Differential Equations
bordeaux.page502-532
bordeaux.volume253
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00710405
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00710405v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Differential%20Equations&rft.date=2012&rft.volume=253&rft.spage=502-532&rft.epage=502-532&rft.eissn=0022-0396&rft.issn=0022-0396&rft.au=DUCROT,%20Arnaud&LANGLAIS,%20Michel&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée