Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAMAR, Eric
dc.date.accessioned2024-04-04T02:24:37Z
dc.date.available2024-04-04T02:24:37Z
dc.date.created2012-09-11
dc.date.issued2014
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189829
dc.description.abstractEnThe interpolating sequences for $H^{\infty }({\mathbb{D}}),$ the bounded holomorphic function in the unit disc ${\mathbb{D}}$ of the complex plane ${\mathbb{C}},$ {\small where characterised by L. Carleson by metric conditions on the points. They are also characterised by "dual boundedness" conditions which imply an infinity of functions. A. Hartmann proved recently that just one function in $H^{\infty }({\mathbb{D}})$ was enough to characterize interpolating sequences for $H^{\infty }({\mathbb{D}}).$ In this work we use the "hard" part of the proof of Carleson for the Corona theorem, to extend Hartman's result and answer a question he asked in his paper.}\ \par
dc.language.isoen
dc.title.enOn separated Carleson sequences in the unit disc of ${\mathbb{C}}.$
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
dc.identifier.arxiv1109.4040
bordeaux.journalPublicacions Matemàtiques
bordeaux.page401-414
bordeaux.volume58
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00624583
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00624583v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Publicacions%20Matem%C3%A0tiques&rft.date=2014&rft.volume=58&rft.issue=2&rft.spage=401-414&rft.epage=401-414&rft.au=AMAR,%20Eric&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée