Afficher la notice abrégée

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorVAITER, Samuel
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorPEYRÉ, Gabriel
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDOSSAL, Charles
hal.structure.identifierEquipe Image - Laboratoire GREYC - UMR6072
dc.contributor.authorFADILI, Jalal M.
dc.date.accessioned2024-04-04T02:24:28Z
dc.date.available2024-04-04T02:24:28Z
dc.date.created2011-09
dc.date.issued2013
dc.identifier.issn0018-9448
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189818
dc.description.abstractEnThis paper investigates the theoretical guarantees of L1-analysis regularization when solving linear inverse problems. Most of previous works in the literature have mainly focused on the sparse synthesis prior where the sparsity is measured as the L1 norm of the coefficients that synthesize the signal from a given dictionary. In contrast, the more general analysis regularization minimizes the L1 norm of the correlations between the signal and the atoms in the dictionary, where these correlations define the analysis support. The corresponding variational problem encompasses several well-known regularizations such as the discrete total variation and the Fused Lasso. Our main contributions consist in deriving sufficient conditions that guarantee exact or partial analysis support recovery of the true signal in presence of noise. More precisely, we give a sufficient condition to ensure that a signal is the unique solution of the L1-analysis regularization in the noiseless case. The same condition also guarantees exact analysis support recovery and L2-robustness of the L1-analysis minimizer vis-a-vis an enough small noise in the measurements. This condition turns to be sharp for the robustness of the analysis support. To show partial support recovery and L2-robustness to an arbitrary bounded noise, we introduce a stronger sufficient condition. When specialized to the L1-synthesis regularization, our results recover some corresponding recovery and robustness guarantees previously known in the literature. From this perspective, our work is a generalization of these results. We finally illustrate these theoretical findings on several examples to study the robustness of the 1-D total variation and Fused Lasso regularizations.
dc.description.sponsorshipAdaptivité pour la représentation des images naturelles et des textures - ANR-08-EMER-0009
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers
dc.subject.ensparsity
dc.subject.enanalysis regularization
dc.subject.ensynthesis regularization
dc.subject.eninverse problems
dc.subject.enL1 minimization
dc.subject.enunion of subspaces
dc.subject.ennoise robustness
dc.subject.entotal variation
dc.subject.enwavelets
dc.subject.enFused Lasso
dc.title.enRobust Sparse Analysis Regularization
dc.typeArticle de revue
dc.identifier.doi10.1109/TIT.2012.2233859
dc.subject.halMathématiques [math]/Théorie de l'information et codage [math.IT]
dc.subject.halInformatique [cs]/Théorie de l'information [cs.IT]
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
dc.subject.halInformatique [cs]/Traitement du signal et de l'image
dc.identifier.arxiv1109.6222
dc.description.sponsorshipEuropeSparsity, Image and Geometry to Model Adaptively Visual Processings
bordeaux.journalIEEE Transactions on Information Theory
bordeaux.page2001-2016
bordeaux.volume59
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00627452
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00627452v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=IEEE%20Transactions%20on%20Information%20Theory&rft.date=2013&rft.volume=59&rft.issue=4&rft.spage=2001-2016&rft.epage=2001-2016&rft.eissn=0018-9448&rft.issn=0018-9448&rft.au=VAITER,%20Samuel&PEYR%C3%89,%20Gabriel&DOSSAL,%20Charles&FADILI,%20Jalal%20M.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée