Show simple item record

hal.structure.identifierInstituto de Matem atica
dc.contributor.authorABREU, Jamil
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorHAAK, Bernhard Hermann
hal.structure.identifierAnalysis group
dc.contributor.authorVAN NEERVEN, Jan
dc.date.accessioned2024-04-04T02:23:20Z
dc.date.available2024-04-04T02:23:20Z
dc.date.issued2013-03-13
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189730
dc.description.abstractEnSuppose that A admits a bounded H^infty-calculus of angle less than pi/2 on a Banach space E which has Pisier's property (alpha ), let B be a bounded linear operator from a Hilbert space H into the extrapolation space E_{-1} of E with respect to A, and let W_H denote an H-cylindrical Brownian motion. Let gamma(H;E) denote the space of all gamma-radonifying operators from H to E. We prove that the following assertions are equivalent: (a) the stochastic Cauchy problem dU(t) = AU(t) dt + B dWH(t) admits an invariant measure on E; (b) (-A)^{-1/2} B \in gamma(H;E); (c) the Gaussian sum \sum \ga_n 2^{n/2} R(2^n;A)B converges in gamma(H;E) in probability. This solves the stochastic Weiss conjecture of [8].
dc.description.sponsorshipAux frontières de l'analyse Harmonique - ANR-12-BS01-0013
dc.language.isoen
dc.rights.urihttp://hal.archives-ouvertes.fr/licences/copyright/
dc.title.enThe stochastic Weiss conjecture for bounded analytic semigroups
dc.typeArticle de revue
dc.identifier.doi10.1112/jlms/jdt003
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
bordeaux.journalJournal London Mathematical Society
bordeaux.page181-201
bordeaux.volume88
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00771883
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00771883v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20London%20Mathematical%20Society&rft.date=2013-03-13&rft.volume=88&rft.issue=1&rft.spage=181-201&rft.epage=181-201&rft.au=ABREU,%20Jamil&HAAK,%20Bernhard%20Hermann&VAN%20NEERVEN,%20Jan&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record