Afficher la notice abrégée

hal.structure.identifierDepartment of Mathematics [Basel]
dc.contributor.authorCANCI, Jung Kyu
hal.structure.identifierInstitut fur Mathematik
dc.contributor.authorPERUGINELLI, Giulio
hal.structure.identifierScuola Normale Superiore di Pisa [SNS]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorTOSSICI, Dajano
dc.date.accessioned2024-04-04T02:22:32Z
dc.date.available2024-04-04T02:22:32Z
dc.date.created2010
dc.date.issued2012
dc.identifier.issn0025-2611
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189659
dc.description.abstractEnLet $\varphi$ be an endomorphism of $\mathbb{P}^1_{\overline{\Q}}$ defined over a number field $K$. Given a discrete valuation $v$ of $K$, we consider here two notions of good reduction of $\varphi$ at $v$, called Standard Good Reduction (S.G.R., for short) and Critically Good Reduction (C.G.R.). If we consider the reduced map $\varphi_v$, in general its degree is smaller or equal to the degree of $\varphi$. We say that the map $\varphi$ has S.G.R. at $v$ if the degree of the reduced map $\varphi_v$ is equal to the degree of $\varphi$. This notion is frequently used in the study of arithmetical dynamical systems, allowing to reduce a global problem to a local problem. Another notion of good reduction has been recently introduced by Szpiro and Tucker to prove a finitess result about equivalence classes of endomorphisms of the projective line. We say that $\varphi$ has C.G.R. at $v$ if every pair of ramification points of $\varphi$ do not coincide modulo $v$ and the same holds for every pair of branch points. As an application of their result, Szpiro and Tucker showed that their theorem implies the well-known Shafarevich-Faltings theorem about the finiteness of the isomorphism classes of elliptic curves defined over a number field $K$ having good reduction outside a prescribed finite set of discrete valuations of $K$. Szpiro and Tucker already in their paper showed with same examples that these two notions are not equivalent. We prove here that if $\varphi$ has C.G.R. at $v$ and the reduced map $\varphi_v$ is separable, then $\varphi$ has S.G.R. at $v$.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.engood reduction
dc.subject.enendomorphism projective line
dc.subject.enramification point
dc.subject.enbranch locus
dc.subject.enseparability
dc.title.enOn some notions of good reduction for endomorphisms of the projective line
dc.typeArticle de revue
dc.identifier.doi10.1007/s00229-012-0573-y
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
bordeaux.journalManuscripta mathematica
bordeaux.page18 pages
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00795633
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00795633v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Manuscripta%20mathematica&rft.date=2012&rft.spage=18%20pages&rft.epage=18%20pages&rft.eissn=0025-2611&rft.issn=0025-2611&rft.au=CANCI,%20Jung%20Kyu&PERUGINELLI,%20Giulio&TOSSICI,%20Dajano&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée