Restriction estimates via the derivatives of the heat semigroup and connexion with dispersive estimates
hal.structure.identifier | Laboratoire de Mathématiques Jean Leray [LMJL] | |
dc.contributor.author | BERNICOT, Frederic | |
hal.structure.identifier | Équipe Analyse | |
dc.contributor.author | OUHABAZ, El Maati | |
dc.date.accessioned | 2024-04-04T02:22:17Z | |
dc.date.available | 2024-04-04T02:22:17Z | |
dc.date.created | 2013-04-11 | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1073-2780 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189640 | |
dc.description.abstractEn | We consider an abstract non-negative self-adjoint operator $H$ on an $L^2$-space. We derive a characterization for the restriction estimate $\| dE_H(\lambda) \|_{L^p \to L^{p'}} \le C \lambda^{\frac{d}{2}(\frac{1}{p} - \frac{1}{p'}) -1}$ in terms of higher order derivatives of the semigroup $e^{-tH}$. We provide an alternative proof of a result in [1] which asserts that dispersive estimates imply restriction estimates. We also prove $L^p-L^{p'}$ estimates for the derivatives of the spectral resolution of $H$. | |
dc.description.sponsorship | Aux frontières de l'analyse Harmonique - ANR-12-BS01-0013 | |
dc.language.iso | en | |
dc.publisher | International Press | |
dc.subject | Restriction estimates | |
dc.subject | semigroup | |
dc.subject | spectral multipliers | |
dc.subject | dispersive estimates | |
dc.title.en | Restriction estimates via the derivatives of the heat semigroup and connexion with dispersive estimates | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Analyse classique [math.CA] | |
dc.identifier.arxiv | 1304.3536 | |
bordeaux.journal | Mathematical Research Letters | |
bordeaux.page | 1047-1058 | |
bordeaux.volume | 20 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 6 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00812285 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00812285v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Research%20Letters&rft.date=2013&rft.volume=20&rft.issue=6&rft.spage=1047-1058&rft.epage=1047-1058&rft.eissn=1073-2780&rft.issn=1073-2780&rft.au=BERNICOT,%20Frederic&OUHABAZ,%20El%20Maati&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |