Show simple item record

hal.structure.identifierLaboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
dc.contributor.authorANDREIANOV, Boris
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBENDAHMANE, Mostafa
hal.structure.identifierLaboratoire d'Analyse, Topologie, Probabilités [LATP]
dc.contributor.authorHUBERT, Florence
dc.date.accessioned2024-04-04T02:22:12Z
dc.date.available2024-04-04T02:22:12Z
dc.date.created2011-02-20
dc.date.issued2013-06
dc.identifier.issn1609-4840
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189635
dc.description.abstractEnWe present a detailed survey of discrete functional analysis tools (consistency results, Poincaré and Sobolev embedding inequalities, discrete $W^{1,p}$ compactness, discrete compactness in space and in time) for the so-called Discrete Duality (DDFV) Finite Volume schemes in three space dimensions. We concentrate mainly on the 3D CeVe-DDFV scheme presented in [3]. Some of our results are new, such as a general time-compactness result based upon the idea of Kruzhkov [65]; others generalize the ideas known for the 2D DDFV schemes or for traditional two-point finite volume schemes. We illustrate the use of these tools by studying convergence of discretizations of nonlinear elliptic-parabolic problems of Leray-Lions kind, and provide numerical results for this example.
dc.language.isoen
dc.publisherDe Gruyter
dc.rights.urihttp://creativecommons.org/licenses/by-nc/
dc.subject.enFinite volume approximation
dc.subject.enDiscrete duality
dc.subject.enCeVe-DDFV
dc.subject.enConvergence
dc.subject.enConsistency
dc.subject.enDiscrete compactness
dc.subject.enDiscrete Sobolev embeddings
dc.subject.enDegenerate parabolic problems
dc.title.enOn 3D DDFV discretization of gradient and divergence operators. II. Discrete functional analysis tools and applications to degenerate parabolic problems.
dc.typeArticle de revue
dc.identifier.doi10.1515/cmam-2013-0011
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalComputational Methods in Applied Mathematics
bordeaux.pagepp. 369–410
bordeaux.volume13
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00567342
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00567342v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computational%20Methods%20in%20Applied%20Mathematics&rft.date=2013-06&rft.volume=13&rft.issue=4&rft.spage=pp.%20369%E2%80%93410&rft.epage=pp.%20369%E2%80%93410&rft.eissn=1609-4840&rft.issn=1609-4840&rft.au=ANDREIANOV,%20Boris&BENDAHMANE,%20Mostafa&HUBERT,%20Florence&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record