Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorCHARPENTIER, Philippe
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDUPAIN, Yves
hal.structure.identifierChercheur indépendant
dc.contributor.authorMOUNKAILA, , Modi
dc.date.accessioned2024-04-04T02:22:04Z
dc.date.available2024-04-04T02:22:04Z
dc.date.created2012-12-05
dc.date.issued2014
dc.identifier.issn1747-6933
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189625
dc.description.abstractEnIn this paper we investigate the regularity properties of weighted Bergman projections for smoothly bounded pseudo-convex domains of finite type in $\mathbb{C}^{n}$. The main result is obtained for weights equal to a non negative rational power of the absolute value of a special defining function $\rho$ of the domain: we prove (weighted) Sobolev-$L^{p}$ and Lipchitz estimates for domains in $\mathbb{C}^{2}$ (or, more generally, for domains having a Levi form of rank $\geq n-2$ and for ''decoupled'' domains) and for convex domains. In particular, for these defining functions, we generalize results obtained by A. Bonami \& S. Grellier and D. C. Chang \& B. Q. Li. We also obtain a general (weighted) Sobolev-$L^{2}$ estimate.
dc.language.isoen
dc.publisherTaylor & Francis
dc.subject.enpseudo-convex
dc.subject.enfinite type
dc.subject.enLevi form locally diagonalizable
dc.subject.enconvex
dc.subject.enextremal basis
dc.subject.engeometric separation
dc.subject.enweighted Bergman projection
dc.subject.en$\overline{\partial}_{\varphi}$-Neumann problem}
dc.title.enEstimates for some Weighted Bergman Projections
dc.typeArticle de revue
dc.identifier.doi10.1080/17476933.2013.805411
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
dc.identifier.arxiv1212.1078
bordeaux.journalComplex Variables and Elliptic Equations
bordeaux.page1070-1095
bordeaux.volume59
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue8
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00761375
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00761375v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Complex%20Variables%20and%20Elliptic%20Equations&rft.date=2014&rft.volume=59&rft.issue=8&rft.spage=1070-1095&rft.epage=1070-1095&rft.eissn=1747-6933&rft.issn=1747-6933&rft.au=CHARPENTIER,%20Philippe&DUPAIN,%20Yves&MOUNKAILA,%20,%20Modi&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record