Estimates for some Weighted Bergman Projections
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | CHARPENTIER, Philippe | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | DUPAIN, Yves | |
hal.structure.identifier | Chercheur indépendant | |
dc.contributor.author | MOUNKAILA, , Modi | |
dc.date.accessioned | 2024-04-04T02:22:04Z | |
dc.date.available | 2024-04-04T02:22:04Z | |
dc.date.created | 2012-12-05 | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1747-6933 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189625 | |
dc.description.abstractEn | In this paper we investigate the regularity properties of weighted Bergman projections for smoothly bounded pseudo-convex domains of finite type in $\mathbb{C}^{n}$. The main result is obtained for weights equal to a non negative rational power of the absolute value of a special defining function $\rho$ of the domain: we prove (weighted) Sobolev-$L^{p}$ and Lipchitz estimates for domains in $\mathbb{C}^{2}$ (or, more generally, for domains having a Levi form of rank $\geq n-2$ and for ''decoupled'' domains) and for convex domains. In particular, for these defining functions, we generalize results obtained by A. Bonami \& S. Grellier and D. C. Chang \& B. Q. Li. We also obtain a general (weighted) Sobolev-$L^{2}$ estimate. | |
dc.language.iso | en | |
dc.publisher | Taylor & Francis | |
dc.subject.en | pseudo-convex | |
dc.subject.en | finite type | |
dc.subject.en | Levi form locally diagonalizable | |
dc.subject.en | convex | |
dc.subject.en | extremal basis | |
dc.subject.en | geometric separation | |
dc.subject.en | weighted Bergman projection | |
dc.subject.en | $\overline{\partial}_{\varphi}$-Neumann problem} | |
dc.title.en | Estimates for some Weighted Bergman Projections | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1080/17476933.2013.805411 | |
dc.subject.hal | Mathématiques [math]/Variables complexes [math.CV] | |
dc.identifier.arxiv | 1212.1078 | |
bordeaux.journal | Complex Variables and Elliptic Equations | |
bordeaux.page | 1070-1095 | |
bordeaux.volume | 59 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 8 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00761375 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00761375v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Complex%20Variables%20and%20Elliptic%20Equations&rft.date=2014&rft.volume=59&rft.issue=8&rft.spage=1070-1095&rft.epage=1070-1095&rft.eissn=1747-6933&rft.issn=1747-6933&rft.au=CHARPENTIER,%20Philippe&DUPAIN,%20Yves&MOUNKAILA,%20,%20Modi&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |