Gas-surface interaction and boundary conditions for the Boltzmann equation
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BRULL, Stéphane | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | CHARRIER, Pierre | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MIEUSSENS, Luc | |
dc.date.accessioned | 2024-04-04T02:22:04Z | |
dc.date.available | 2024-04-04T02:22:04Z | |
dc.date.created | 2013-05-24 | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1937-5093 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189624 | |
dc.description.abstractEn | In this paper we revisit the derivation of boundary conditions for the Boltzmann Equation. The interaction between the wall atoms and the gas molecules within a thin surface layer is described by a kinetic equation introduced in [9] and used in [1]. This equation includes a Vlasov term and a linear molecule-phonon collision term and is coupled with the Boltzmann equation describing the evolution of the gas in the bulk flow. Boundary conditions are formally derived from this model by using classical tools of kinetic theory such as scaling and systematic asymptotic expansion. In a first step this method is applied to the simplified case of a flat wall. Then it is extented to walls with nanoscale roughness allowing to obtain more complex scattering patterns related to the morphology of the wall. It is proved that the obtained scattering kernels satisfy the classical imposed properties of non-negativeness, normalization and reciprocity introduced by Cercignani [11]. | |
dc.language.iso | en | |
dc.publisher | AIMS | |
dc.subject.en | nano flows | |
dc.subject.en | surface layer | |
dc.subject.en | Maxwell boundary conditions. | |
dc.subject.en | Maxwell boundary conditions | |
dc.title.en | Gas-surface interaction and boundary conditions for the Boltzmann equation | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
dc.identifier.arxiv | 1306.4309 | |
bordeaux.journal | Kinetic and Related Models | |
bordeaux.page | 1-33 | |
bordeaux.volume | 7 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 2 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00826005 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00826005v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Kinetic%20and%20Related%20Models&rft.date=2014&rft.volume=7&rft.issue=2&rft.spage=1-33&rft.epage=1-33&rft.eissn=1937-5093&rft.issn=1937-5093&rft.au=BRULL,%20St%C3%A9phane&CHARRIER,%20Pierre&MIEUSSENS,%20Luc&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |