Mostrar el registro sencillo del ítem

hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorENGE, Andreas
hal.structure.identifierInstitut für Mathematik [Augsburg]
dc.contributor.authorSCHERTZ, Reinhard
dc.date.accessioned2024-04-04T02:21:46Z
dc.date.available2024-04-04T02:21:46Z
dc.date.issued2013
dc.identifier.issn1461-1570
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189602
dc.description.abstractEnWe determine the conditions under which singular values of multiple $\eta$-quotients of square-free level, not necessarily prime to~$6$, yield class invariants, that is, algebraic numbers in ring class fields of imaginary-quadratic number fields. We show that the singular values lie in subfields of the ring class fields of index $2^{k' - 1}$ when $k' \geq 2$ primes dividing the level are ramified in the imaginary-quadratic field, which leads to faster computations of elliptic curves with prescribed complex multiplication. The result is generalised to singular values of modular functions on $X_0^+ (p)$ for $p$ prime and ramified.
dc.language.isoen
dc.publisherLondon Mathematical Society
dc.subject.encomplex multiplication
dc.subject.enclass invariants
dc.subject.eneta quotients
dc.subject.enring class fields
dc.title.enSingular values of multiple eta-quotients for ramified primes
dc.typeArticle de revue
dc.identifier.doi10.1112/S146115701300020X
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv1301.5521
dc.description.sponsorshipEuropeAlgorithmic Number Theory in Computer Science
bordeaux.journalLMS Journal of Computation and Mathematics
bordeaux.page407-418
bordeaux.volume16
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00768375
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00768375v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=LMS%20Journal%20of%20Computation%20and%20Mathematics&rft.date=2013&rft.volume=16&rft.spage=407-418&rft.epage=407-418&rft.eissn=1461-1570&rft.issn=1461-1570&rft.au=ENGE,%20Andreas&SCHERTZ,%20Reinhard&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem