Singular values of multiple eta-quotients for ramified primes
ENGE, Andreas
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
ENGE, Andreas
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
LMS Journal of Computation and Mathematics. 2013, vol. 16, p. 407-418
London Mathematical Society
Résumé en anglais
We determine the conditions under which singular values of multiple $\eta$-quotients of square-free level, not necessarily prime to~$6$, yield class invariants, that is, algebraic numbers in ring class fields of ...Lire la suite >
We determine the conditions under which singular values of multiple $\eta$-quotients of square-free level, not necessarily prime to~$6$, yield class invariants, that is, algebraic numbers in ring class fields of imaginary-quadratic number fields. We show that the singular values lie in subfields of the ring class fields of index $2^{k' - 1}$ when $k' \geq 2$ primes dividing the level are ramified in the imaginary-quadratic field, which leads to faster computations of elliptic curves with prescribed complex multiplication. The result is generalised to singular values of modular functions on $X_0^+ (p)$ for $p$ prime and ramified.< Réduire
Mots clés en anglais
complex multiplication
class invariants
eta quotients
ring class fields
Projet Européen
Algorithmic Number Theory in Computer Science
Origine
Importé de halUnités de recherche