Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorGOLENIA, Sylvain
dc.date.accessioned2024-04-04T02:21:11Z
dc.date.available2024-04-04T02:21:11Z
dc.date.issued2014
dc.identifier.issn0022-1236
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189551
dc.description.abstractEnIn this paper we study in detail some spectral properties of the magnetic discrete Laplacian. We identify its form-domain, characterize the absence of essential spectrum and provide the asymptotic eigenvalue distribution.
dc.language.isoen
dc.publisherElsevier
dc.subject.enmagnetic discrete Laplacian
dc.subject.enlocally finite graphs
dc.subject.enself-adjointness
dc.subject.enunboundedness
dc.subject.ensemi-boundedness
dc.subject.enspectrum
dc.subject.enspectral graph theory
dc.subject.enasympotic of eigenvalues
dc.subject.enessential spectrum
dc.title.enHardy inequality and asymptotic eigenvalue distribution for discrete Laplacians
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Théorie spectrale [math.SP]
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
dc.identifier.arxiv1106.0658
bordeaux.journalJournal of Functional Analysis
bordeaux.pageFunct. Anal. 266 (2014), no. 5, 2662-2688
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00598054
hal.version1
hal.popularnon
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00598054v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Functional%20Analysis&rft.date=2014&rft.spage=Funct.%20Anal.%20266%20(2014),%20no.%205,%202662-2688&rft.epage=Funct.%20Anal.%20266%20(2014),%20no.%205,%202662-2688&rft.eissn=0022-1236&rft.issn=0022-1236&rft.au=GOLENIA,%20Sylvain&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record