Show simple item record

hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorBERTHOUMIEU, Yannick
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDOSSAL, Charles
hal.structure.identifierLaboratoire de Physique de l'ENS Lyon [Phys-ENS]
dc.contributor.authorPUSTELNIK, Nelly
dc.contributor.authorRICOUX, Philippe
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorTURCU, Flavius
dc.date.accessioned2024-04-04T02:21:10Z
dc.date.available2024-04-04T02:21:10Z
dc.date.issued2013-08-01
dc.identifier.issn0924-9907
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189549
dc.description.abstractEnThe paper deals with the estimation of the maximal sparsity degree for which a given measurement matrix allows sparse reconstruction through l1-minimization. This problem is a key issue in different applications featuring particular types of measurement matrices, as for instance in the framework of tomography with low number of views. In this framework, while the exact bound is NP hard to compute, most classical criteria guarantee lower bounds that are numerically too pessimistic. In order to achieve an accurate estimation, we propose an efficient greedy algorithm that provides an upper bound for this maximal sparsity. Based on polytope theory, the algorithm consists in finding sparse vectors that cannot be recovered by l1-minimization. Moreover, in order to deal with noisy measurements, theoretical conditions leading to a more restrictive but reasonable bounds are investigated. Numerical results are presented for discrete versions of tomo\-graphy measurement matrices, which are stacked Radon transforms corresponding to different tomograph views.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enCompressed sensing
dc.subject.enDeterministic matrix
dc.subject.enSparsity degree
dc.subject.enGreedy algorithm
dc.title.enAn evaluation of the sparsity degree for sparse recovery with deterministic measurement matrices
dc.typeArticle de revue
dc.identifier.doi10.1007/s10851-013-0453-4
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
dc.subject.halInformatique [cs]/Traitement du signal et de l'image
bordeaux.journalJournal of Mathematical Imaging and Vision
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00878620
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00878620v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Mathematical%20Imaging%20and%20Vision&rft.date=2013-08-01&rft.eissn=0924-9907&rft.issn=0924-9907&rft.au=BERTHOUMIEU,%20Yannick&DOSSAL,%20Charles&PUSTELNIK,%20Nelly&RICOUX,%20Philippe&TURCU,%20Flavius&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record