Show simple item record

hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorENGE, Andreas
hal.structure.identifierGeometry, arithmetic, algorithms, codes and encryption [GRACE]
hal.structure.identifierLaboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
dc.contributor.authorMORAIN, François
dc.date.accessioned2024-04-04T02:20:34Z
dc.date.available2024-04-04T02:20:34Z
dc.date.issued2014
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189502
dc.description.abstractEnA generalised Weber function is given by $\w_N(z) = \eta(z/N)/\eta(z)$, where $\eta(z)$ is the Dedekind function and $N$ is any integer; the original function corresponds to $N=2$. We classify the cases where some power $\w_N^e$ evaluated at some quadratic integer generates the ring class field associated to an order of an imaginary quadratic field. We compare the heights of our invariants by giving a general formula for the degree of the modular equation relating $\w_N(z)$ and $j(z)$. Our ultimate goal is the use of these invariants in constructing reductions of elliptic curves over finite fields suitable for cryptographic use.
dc.language.isoen
dc.publisherInstytut Matematyczny PAN
dc.subject.enWeber function
dc.subject.encomplex multiplication
dc.subject.enclass invariant
dc.title.enGeneralised Weber Functions
dc.typeArticle de revue
dc.identifier.doi10.4064/aa164-4-1
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv0905.3250
dc.description.sponsorshipEuropeAlgorithmic Number Theory in Computer Science
bordeaux.journalActa Arithmetica
bordeaux.page309-341
bordeaux.volume164
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierinria-00385608
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00385608v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Acta%20Arithmetica&rft.date=2014&rft.volume=164&rft.issue=4&rft.spage=309-341&rft.epage=309-341&rft.au=ENGE,%20Andreas&MORAIN,%20Fran%C3%A7ois&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record