Show simple item record

hal.structure.identifierInstitut de Mathématiques de Toulouse UMR5219 [IMT]
dc.contributor.authorCAPITAINE, Mireille
hal.structure.identifierLaboratoire de Mathématiques de Versailles [LMV]
dc.contributor.authorDONATI-MARTIN, Catherine
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorFÉRAL, Delphine
dc.date.accessioned2024-04-04T02:19:55Z
dc.date.available2024-04-04T02:19:55Z
dc.date.issued2009-01
dc.identifier.issn0091-1798
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189446
dc.description.abstractEnWe investigate the asymptotic spectrum of complex or real Deformed Wigner matrices when the entries of the Hermitian (resp., symmetric) Wigner matrix have a symmetric law satisfying a Poincaré inequality. The perturbation is Hermitian (resp., symmetric) and deterministic with all but finitely many eigenvalues equal to zero. We first show that, as soon as the first largest or last smallest eigenvalues of the perturbation are sufficiently far from zero, the corresponding eigenvalues of the deformed Wigner matrix almost surely exit the limiting semicircle compact sup- port as the size becomes large. The corresponding limits are universal in the sense that they only involve the variance of the entries of the Wigner matrix. On the other hand, when the perturbation is diagonal with a sole simple nonnull eigenvalue large enough, we prove that the fluctuations of the largest eigenvalue are not universal and vary with the particular distribution of the entries of the Wigner matrix.
dc.language.isoen
dc.publisherInstitute of Mathematical Statistics
dc.subject.enDeformed Wigner matrices
dc.subject.enasymptotic spectrum
dc.subject.enStieltjes transform
dc.subject.enlargest eigenvalues
dc.subject.enfluctuations
dc.subject.ennonuniversality
dc.title.enTHE LARGEST EIGENVALUES OF FINITE RANK DEFORMATION OF LARGE WIGNER MATRICES: CONVERGENCE AND NONUNIVERSALITY OF THE FLUCTUATIONS
dc.typeArticle de revue
dc.identifier.doi10.1214/08-AOP394
dc.subject.halMathématiques [math]/Probabilités [math.PR]
bordeaux.journalAnnals of Probability
bordeaux.page1-47
bordeaux.volume37
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00939972
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00939972v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Annals%20of%20Probability&rft.date=2009-01&rft.volume=37&rft.issue=1&rft.spage=1-47&rft.epage=1-47&rft.eissn=0091-1798&rft.issn=0091-1798&rft.au=CAPITAINE,%20Mireille&DONATI-MARTIN,%20Catherine&F%C3%89RAL,%20Delphine&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record