Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierQuality control and dynamic reliability [CQFD]
dc.contributor.authorGÉGOUT-PETIT, Anne
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierQuality control and dynamic reliability [CQFD]
dc.contributor.authorAZAÏS, Romain
dc.contributor.authorTOUZET, Marie
dc.contributor.authorPUIGGALI, Monique
dc.contributor.authorBEN ABDESSALEM, Anis
dc.date.accessioned2024-04-04T02:19:53Z
dc.date.available2024-04-04T02:19:53Z
dc.date.created2013-04
dc.date.issued2013-05
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189444
dc.descriptionSoumis
dc.description.abstractEnFatigue crack propagation is a stochastic phenomenon due to the inherent uncertainties originating from material properties, environmental conditions and loads. Stochastic processes offer an appropriate framework for modelling crack propagation. Indeed, these processes enable us to include certain variabilities. In this work, we propose to model the crack propagation mechanism with piecewise-deterministic Markov processes and typical deterministic crack laws. Conventional equations proposed in the literature seem inadequate for describing the entire fatigue crack trajectory, especially when the crack extends in a rapid manner. We propose a regime-switching model to overcome this challenge, in which the propagation is randomly divided into two parts. Each of these parts is governed by a deterministic equation whose parameters are randomly selected in a finite state space. We adjust the parameters from real data available in the literature. The behaviour of the propagation is well captured from the propagation phase until the ''fast crack propagation" phase leading to failure. Thus, the proposed switching model enables us to understand the change between these two phases of propagation. Statistical observations and numerical simulations demonstrate the efficiency of our approach to model fatigue crack growth.
dc.language.isoen
dc.subject.enRegime-switching models
dc.subject.enFatigue crack propagation
dc.subject.enUncertainties
dc.subject.enStochastic processes
dc.subject.enPiecewise-deterministic Markov processes
dc.subject.enRegime-switching models.
dc.title.enStochastic modelling and simulation of fatigue crack propagation using piecewise-deterministic Markov processes
dc.typeAutre document
dc.subject.halMathématiques [math]/Statistiques [math.ST]
dc.subject.halStatistiques [stat]/Théorie [stat.TH]
dc.subject.halPhysique [physics]/Mécanique [physics]/Matériaux et structures en mécanique [physics.class-ph]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Matériaux et structures en mécanique [physics.class-ph]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00940516
hal.version1
hal.popularnon
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00940516v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2013-05&rft.au=G%C3%89GOUT-PETIT,%20Anne&AZA%C3%8FS,%20Romain&TOUZET,%20Marie&PUIGGALI,%20Monique&BEN%20ABDESSALEM,%20Anis&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record