Numerical Approximation of Asymptotically Disappearing Solutions of Maxwell's Equations
dc.contributor.author | ADLER, James H. | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | PETKOV, Vesselin | |
dc.contributor.author | ZIKATANOV, Ludmil T. | |
dc.date.accessioned | 2024-04-04T02:19:41Z | |
dc.date.available | 2024-04-04T02:19:41Z | |
dc.date.created | 2013-07-22 | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1064-8275 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189426 | |
dc.description.abstractEn | This work is on the numerical approximation of incoming solutions to Maxwell's equations with dissipative boundary conditions whose energy decays exponentially with time. Such solutions are called asymptotically disappearing (ADS) and they play an importarnt role in inverse back-scatering problems. The existence of ADS is a difficult mathematical problem. For the exterior of a sphere, such solutions have been constructed analytically by Colombini, Petkov and Rauch [7] by specifying appropriate initial conditions. However, for general domains of practical interest (such as Lipschitz polyhedra), the existence of such solutions is not evident. This paper considers a finite-element approximation of Maxwell's equations in the exterior of a polyhedron, whose boundary approximates the sphere. Standard Nedelec-Raviart-Thomas elements are used with a Crank-Nicholson scheme to approximate the electric and magnetic fields. Discrete initial conditions interpolating the ones chosen in [7] are modified so that they are (weakly) divergence-free. We prove that with such initial conditions, the approximation to the electric field is weakly divergence-free for all time. Finally, we show numerically that the finite-element approximations of the ADS also decay exponentially with time when the mesh size and the time step become small. | |
dc.language.iso | en | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.title.en | Numerical Approximation of Asymptotically Disappearing Solutions of Maxwell's Equations | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1137/120879385 | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
dc.identifier.arxiv | 1205.7046 | |
bordeaux.journal | SIAM Journal on Scientific Computing | |
bordeaux.page | S386-S401 | |
bordeaux.volume | 35 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00947041 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00947041v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SIAM%20Journal%20on%20Scientific%20Computing&rft.date=2013&rft.volume=35&rft.spage=S386-S401&rft.epage=S386-S401&rft.eissn=1064-8275&rft.issn=1064-8275&rft.au=ADLER,%20James%20H.&PETKOV,%20Vesselin&ZIKATANOV,%20Ludmil%20T.&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |