Afficher la notice abrégée

dc.contributor.authorADLER, James H.
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPETKOV, Vesselin
dc.contributor.authorZIKATANOV, Ludmil T.
dc.date.accessioned2024-04-04T02:19:41Z
dc.date.available2024-04-04T02:19:41Z
dc.date.created2013-07-22
dc.date.issued2013
dc.identifier.issn1064-8275
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189426
dc.description.abstractEnThis work is on the numerical approximation of incoming solutions to Maxwell's equations with dissipative boundary conditions whose energy decays exponentially with time. Such solutions are called asymptotically disappearing (ADS) and they play an importarnt role in inverse back-scatering problems. The existence of ADS is a difficult mathematical problem. For the exterior of a sphere, such solutions have been constructed analytically by Colombini, Petkov and Rauch [7] by specifying appropriate initial conditions. However, for general domains of practical interest (such as Lipschitz polyhedra), the existence of such solutions is not evident. This paper considers a finite-element approximation of Maxwell's equations in the exterior of a polyhedron, whose boundary approximates the sphere. Standard Nedelec-Raviart-Thomas elements are used with a Crank-Nicholson scheme to approximate the electric and magnetic fields. Discrete initial conditions interpolating the ones chosen in [7] are modified so that they are (weakly) divergence-free. We prove that with such initial conditions, the approximation to the electric field is weakly divergence-free for all time. Finally, we show numerically that the finite-element approximations of the ADS also decay exponentially with time when the mesh size and the time step become small.
dc.language.isoen
dc.publisherSociety for Industrial and Applied Mathematics
dc.title.enNumerical Approximation of Asymptotically Disappearing Solutions of Maxwell's Equations
dc.typeArticle de revue
dc.identifier.doi10.1137/120879385
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
dc.identifier.arxiv1205.7046
bordeaux.journalSIAM Journal on Scientific Computing
bordeaux.pageS386-S401
bordeaux.volume35
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00947041
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00947041v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SIAM%20Journal%20on%20Scientific%20Computing&rft.date=2013&rft.volume=35&rft.spage=S386-S401&rft.epage=S386-S401&rft.eissn=1064-8275&rft.issn=1064-8275&rft.au=ADLER,%20James%20H.&PETKOV,%20Vesselin&ZIKATANOV,%20Ludmil%20T.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée