Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMARTINET, Jacques
dc.date.accessioned2024-04-04T02:19:14Z
dc.date.available2024-04-04T02:19:14Z
dc.date.created2012-02-10
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189384
dc.description.abstractEnLet $\Lb$ be a lattice in an $n$-dimensional Euclidean space $E$ and let $\Lb'$ be a Minkowskian sublattice of $\Lb$, that is, a sublattice having a basis made of representatives for the Minkowski successive minima of $\Lb$. We consider the set of possible quotients $\Lb/\Lb'$ which may exists in a given dimension or among not too large values of the index $[\Lb:\Lb']$, indeed $[\Lb:\Lb']\le 4$, or dimension $n\le 8$.
dc.language.isoen
dc.title.enOn the index system of well-rounded lattices
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv1202.2295
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00956656
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00956656v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=MARTINET,%20Jacques&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record