Time Asymptotic High Order Schemes for Dissipative BGK Hyperbolic Systems
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | AREGBA-DRIOLLET, Denise | |
hal.structure.identifier | Istituto per le Applicazioni del Calcolo "Mauro Picone" [IAC] | |
dc.contributor.author | BRIANI, Maya | |
hal.structure.identifier | Istituto per le Applicazioni del Calcolo "Mauro Picone" [IAC] | |
dc.contributor.author | NATALINI, Roberto | |
dc.date.accessioned | 2024-04-04T02:19:05Z | |
dc.date.available | 2024-04-04T02:19:05Z | |
dc.date.created | 2012-07-26 | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0029-599X | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189371 | |
dc.description.abstractEn | We introduce a new class of finite differences schemes to approximate one dimensional dissipative semilinear hyperbolic systems with a BGK structure. Using precise analytical time-decay estimates of the local truncation error, it is possible to design schemes, based on the standard upwind approximation, which are increasingly accurate for large times when approximating small perturbations of constant asymptotic states. Numerical tests show their better performances with respect to those of other schemes. | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.title.en | Time Asymptotic High Order Schemes for Dissipative BGK Hyperbolic Systems | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s00211-015-0720-y | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.identifier.arxiv | 1207.6279 | |
bordeaux.journal | Numerische Mathematik | |
bordeaux.page | 399:431 | |
bordeaux.volume | 132 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00959508 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00959508v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Numerische%20Mathematik&rft.date=2016&rft.volume=132&rft.spage=399:431&rft.epage=399:431&rft.eissn=0029-599X&rft.issn=0029-599X&rft.au=AREGBA-DRIOLLET,%20Denise&BRIANI,%20Maya&NATALINI,%20Roberto&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |