Description of some ground states by Puiseux technics
hal.structure.identifier | Instituto de Matemática, Estatística e Computação Científica [Brésil] [IMECC] | |
dc.contributor.author | GARIBALDI, Eduardo | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | THIEULLEN, Philippe | |
dc.date.accessioned | 2024-04-04T02:18:42Z | |
dc.date.available | 2024-04-04T02:18:42Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0022-4715 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189339 | |
dc.description.abstractEn | Let $(\Sigma^+_G, \sigma)$ be a one-sided transitive subshift of finite type, where symbols are given by a finite spin set $ S $, and admissible transitions are represented by an irreducible directed graph $ G\subset S\times S $. Let $ H : \Sigma^+_G\to\mathbb{R}$ be a locally constant function (that corresponds with a local observable which makes finite-range interactions). Given $\beta > 0$, let $ \mu_{\beta H} $ be the Gibbs-equilibrium probability measure associated with the observable $-\beta H$. It is known, by using abstract considerations, that $\{\mu_{\beta H}\}_{\beta>0}$ converges as $ \beta \to + \infty $ to a $H$-minimizing probability measure $\mu_{\textrm{min}}^H$ called zero-temperature Gibbs measure. For weighted graphs with a small number of vertices, we describe here an algorithm (similar to the Puiseux algorithm) that gives the explicit form of $\mu_{\textrm{min}}^H$ on the set of ground-state configurations | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.subject.en | zero-temperature Gibbs measures | |
dc.subject.en | ground-state configurations | |
dc.subject.en | Puiseux algorithm | |
dc.title.en | Description of some ground states by Puiseux technics | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Systèmes dynamiques [math.DS] | |
bordeaux.journal | Journal of Statistical Physics | |
bordeaux.page | 125 - 180 | |
bordeaux.volume | 146 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00963864 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00963864v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Statistical%20Physics&rft.date=2012&rft.volume=146&rft.spage=125%20-%20180&rft.epage=125%20-%20180&rft.eissn=0022-4715&rft.issn=0022-4715&rft.au=GARIBALDI,%20Eduardo&THIEULLEN,%20Philippe&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |