On the essential dimension of infinitesimal group schemes
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Scuola Normale Superiore di Pisa [SNS] | |
dc.contributor.author | TOSSICI, Dajano | |
hal.structure.identifier | Scuola Normale Superiore di Pisa [SNS] | |
dc.contributor.author | VISTOLI, Angelo | |
dc.date.accessioned | 2024-04-04T02:18:34Z | |
dc.date.available | 2024-04-04T02:18:34Z | |
dc.date.created | 2010-10-25 | |
dc.date.issued | 2013-02 | |
dc.identifier.issn | 0002-9327 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189326 | |
dc.description.abstractEn | We discuss essential dimension of group schemes, with particular attention to infinitesimal group schemes. We prove that the essential dimension of a group scheme of finite type over a field k is at least equal to the difference between the dimension of its Lie algebra and its dimension. Furthermore, we show that the essential dimension of a trigonalizable group scheme of length p^{n} over a field of characteristic p>0 is at most n. We give several examples. | |
dc.language.iso | en | |
dc.publisher | Johns Hopkins University Press | |
dc.subject | dimension essentielle | |
dc.subject | schémas en groupes | |
dc.title.en | On the essential dimension of infinitesimal group schemes | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1353/ajm.2013.0007 | |
dc.subject.hal | Mathématiques [math]/Géométrie algébrique [math.AG] | |
dc.identifier.arxiv | 1001.3988 | |
bordeaux.journal | American Journal of Mathematics | |
bordeaux.page | 103-114 | |
bordeaux.volume | 135 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 1 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00968912 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00968912v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=American%20Journal%20of%20Mathematics&rft.date=2013-02&rft.volume=135&rft.issue=1&rft.spage=103-114&rft.epage=103-114&rft.eissn=0002-9327&rft.issn=0002-9327&rft.au=TOSSICI,%20Dajano&VISTOLI,%20Angelo&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |