Show simple item record

hal.structure.identifierInstitut des Hautes Études Scientifiques [IHES]
dc.contributor.authorGABBER, Ofer
hal.structure.identifierÉquipe Théorie des Nombres
dc.contributor.authorLIU, Qing
dc.contributor.authorLORENZINI, Dino
dc.date.accessioned2024-04-04T02:18:14Z
dc.date.available2024-04-04T02:18:14Z
dc.date.created2011
dc.date.issued2015
dc.identifier.issn0012-7094
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189294
dc.description.abstractEnLet X/S be a quasi-projective morphism over an affine base. We develop in this article a technique for proving the existence of closed subschemes H/S of X/S with various favorable properties. We offer several applications of this technique, including the existence of finite quasi-sections in certain projective morphisms, and the existence of hypersurfaces in X/S containing a given closed subscheme C, and intersecting properly a closed set F. Assume now that the base S is the spectrum of a ring R such that for any finite morphism Z -> S, Pic(Z) is a torsion group. This condition is satisfied if R is the ring of integers of a number field, or the ring of functions of a smooth affine curve over a finite field. We prove in this context a moving lemma pertaining to horizontal 1-cycles on a regular scheme X quasi-projective and flat over S. We also show the existence of a finite surjective S-morphism to the projective space P_S^d for any scheme X projective over S when X/S has all its fibers of a fixed dimension d.
dc.language.isoen
dc.publisherDuke University Press
dc.subject.enNoether normalization
dc.subject.enAvoidance lemma
dc.subject.enBertini-type theorem
dc.subject.enHypersurface
dc.subject.enMoving lemma
dc.subject.enMultisection
dc.subject.en1-cycle
dc.subject.enPictorsion
dc.subject.enQuasi-section
dc.subject.enRational equivalence
dc.subject.enZero locus of a section
dc.subject.enNoether normalization.
dc.title.enHypersurfaces in projective schemes and a moving lemma
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Géométrie algébrique [math.AG]
dc.identifier.arxiv1404.5366
bordeaux.journalDuke Mathematical Journal
bordeaux.page1187-1270
bordeaux.volume164
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue7
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00989236
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00989236v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Duke%20Mathematical%20Journal&rft.date=2015&rft.volume=164&rft.issue=7&rft.spage=1187-1270&rft.epage=1187-1270&rft.eissn=0012-7094&rft.issn=0012-7094&rft.au=GABBER,%20Ofer&LIU,%20Qing&LORENZINI,%20Dino&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record