Afficher la notice abrégée

hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorSALMON, F.
hal.structure.identifierEcole de Technologie Supérieure [Montréal] [ETS]
dc.contributor.authorGHADIM, H. Benisi
hal.structure.identifierLaboratoire des Sciences de l'Ingénieur pour l'Environnement - UMR 7356 [LaSIE]
dc.contributor.authorGODIN, A.
hal.structure.identifierEcole de Technologie Supérieure [Montréal] [ETS]
dc.contributor.authorHAILLOT, D.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorVEILLÈRE, Amélie
hal.structure.identifierEcole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)
dc.contributor.authorLACANETTE-PUYO, Delphine
hal.structure.identifierLaboratoire des Sciences de l'Ingénieur pour l'Environnement - UMR 7356 [LaSIE]
dc.contributor.authorDUQUESNE, M.
dc.date.issued2024
dc.identifier.issn0306-2619
dc.description.abstractThe relentless advancement of electronic devices has led to increased power densities, resulting in thermal challenges that threaten device reliability. This study aims to address this issue through the development of innovative heterogeneous materials for cooling electronic components. We focus on phase change materials (PCMs) impregnated within architected porous structures fabricated using additive manufacturing technology and 3D printing techniques. The objective is to leverage numerical simulations and additive manufacturing technology to select suitable materials and optimize heat dissipation within these structures. A comprehensive literature review of existing thermal management systems (TMS) for electronic devices, including mobile phones, laptops, and data centres, is presented. This review establishes a foundation for understanding the significance of TMS and introduces the benefits of employing PCMs in electronic devices. To assess the impact of the structure materials, we have run numerical simulations involving stainless steel, silver, Inconel, aluminium, copper, titanium, and steel architected porous structures impregnated with palmitic acid as the PCM. The results demonstrate the superior heat dissipation of silver, copper, and aluminium porous structures, attributed to their higher thermal diffusivities. Other simulations explore PCMs with higher melting temperatures and latent heat capacities, considering specific application parameters like mobile phones and laptops. By integrating three organic PCMs (Myristic acid, Palmitic acid, and Stearic acid) within architected matrices, it offers a promising solution in the choice of PCMs to the challenges posed by high power densities in electronics. This approach deepens our understanding of the melting process and allows the optimization of heat transfer within architected structures
dc.language.isoen
dc.publisherElsevier
dc.subjectManagement
dc.subjectMonitoring
dc.subjectPolicy and Law
dc.subjectMechanical Engineering
dc.subjectGeneral Energy
dc.subjectBuilding and Construction
dc.subjectElectronic devices
dc.subjectThermal management systems
dc.subjectPhase change materials
dc.subjectTriply periodic morphologies
dc.subjectHeat transfer
dc.subjectArchitected porous structure
dc.titleOptimizing performance for cooling electronic components using innovative heterogeneous materials
dc.typeArticle de revue
dc.identifier.doi10.1016/j.apenergy.2024.122983
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des structures [physics.class-ph]
bordeaux.journalApplied Energy
bordeaux.page122983
bordeaux.volume362
bordeaux.peerReviewedoui
hal.identifierhal-04521758
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04521758v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Optimizing%20performance%20for%20cooling%20electronic%20components%20using%20innovative%20heterogeneous%20materials&rft.atitle=Optimizing%20performance%20for%20cooling%20electronic%20components%20using%20innovative%20heterogeneous%20materials&rft.jtitle=Applied%20Energy&rft.date=2024&rft.volume=362&rft.spage=122983&rft.epage=122983&rft.eissn=0306-2619&rft.issn=0306-2619&rft.au=SALMON,%20F.&GHADIM,%20H.%20Benisi&GODIN,%20A.&HAILLOT,%20D.&VEILL%C3%88RE,%20Am%C3%A9lie&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée