Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorMARTINS, Kevin
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorBONNETON, Philippe
IDREF: 059798823
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorMOURAGUES, Arthur
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorCASTELLE, Bruno
IDREF: 087596520
dc.date.accessioned2024-03-20T14:25:15Z
dc.date.available2024-03-20T14:25:15Z
dc.date.issued2020-01-18
dc.identifier.issn2169-9275en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/188886
dc.description.abstractEnIn the surf zone, non-hydrostatic processes are either neglected or estimated using linear wave theory. The recent development of technologies capable of directly measuring the free surface elevation, such as 2-D lidar scanners, allow for a thorough assessment of the validity of such hypotheses. In this study, we use subsurface pressure and lidar data to study the non-linear and non-hydrostatic character of surf zone waves. Non-hydrostatic effects are found important everywhere in the surf zone (from the outer to the inner surf zones). Surface elevation variance, skewness, and asymmetry estimated from the hydrostatic reconstruction are found to significantly underestimate the values obtained from the lidar data. At the wave-by-wave scale, this is explained by the underestimation of the wave crest maximal elevations, even in the inner surf zone, where the wave profile around the broken wave face is smoothed. The classic transfer function based on linear wave theory brings only marginal improvements in this regard, compared to the hydrostatic reconstruction. A recently developed non-linear weakly dispersive reconstruction is found to consistently outperform the hydrostatic or classic transfer function reconstructions over the entire surf zone, with relative errors on the surface elevation variance and skewness around 5% on average. In both the outer and inner surf zones, this method correctly reproduces the steep front of breaking and broken waves and their individual wave height to within 10%. The performance of this irrotational method supports the hypothesis that the flow under broken waves is dominated by irrotational motions.
dc.language.isoENen_US
dc.subject.enSub-surface pressure and lidar data are used to study the non-linear and non6 hydrostatic character of surf zone waves
dc.subject.enNon-hydrostatic effects are strong even in the inner surf zone
dc.subject.enwhere broken waves are sharp-crested and have a steep front
dc.subject.enOscillatory flow under broken waves is dominated by irrotational motions
dc.title.enNon-hydrostatic, non-linear processes in the surf zone
dc.typeArticle de revueen_US
dc.subject.halPlanète et Univers [physics]/Océan, Atmosphèreen_US
dc.subject.halPlanète et Univers [physics]/Interfaces continentales, environnementen_US
bordeaux.journalJournal of Geophysical Research. Oceansen_US
bordeaux.volume125en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.issue2en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.teamMETHYSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-03045484
hal.version1
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Geophysical%20Research.%20Oceans&rft.date=2020-01-18&rft.volume=125&rft.issue=2&rft.eissn=2169-9275&rft.issn=2169-9275&rft.au=MARTINS,%20Kevin&BONNETON,%20Philippe&MOURAGUES,%20Arthur&CASTELLE,%20Bruno&rft.genre=article


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record