Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorKRAUSE, Kevin
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorGARCIA, Marine
dc.contributor.authorMICHAU, Dominique
dc.contributor.authorCLISSON, Gérald
dc.contributor.authorBILLINGHURST, Brant
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorBATTAGLIA, Jean-Luc
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCHEVALIER, Stéphane
dc.date.accessioned2024-02-16T09:05:27Z
dc.date.available2024-02-16T09:05:27Z
dc.date.issued2023
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/188190
dc.description.abstractEnPolymer electrolyte membrane (PEM) electrolyzers are renewable energy storage systems that produce high purity hydrogen fuel from electrochemical water splitting. The PEM in particular is a key component that acts as a solid electrolyte between electrodes and separates the reactants, but despite these benefits, its internal ion transport mechanisms are not fully understood. Here, the first microfluidic PEM electrolyzer that is semi-transparent in the infrared (IR) spectrum is developed as a platform for characterizing the PEM hydration during operation. The electrochemical performance of the chip is compared to its PEM hydration, which is measured via synchrotron Fourier-transform infrared (FTIR) spectroscopy. The PEM water content is directly probed in the operating electrolyzer by measuring the transmitted light intensity at wavelengths around 10 ?m. By supplying the electrolyzer with reactant starving flow rates, mass transport driven cell failure is provoked, which coincides with membrane dehydration. Furthermore, higher operating temperatures are observed to improve the stability in membrane hydration through increasing the membrane water uptake. The methods presented here prove the viability of IR techniques for characterizing membrane hydration, and future extension towards imaging and thermography would enable further quantitative studies of internal membrane transport behaviors. © 2023 The Royal Society of Chemistry.
dc.description.sponsorshipIMagerie Multiphysique des Piles A Combustible microfluidiques - ANR-20-CE05-0018en_US
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.title.enProbing membrane hydration in microfluidic polymer electrolyte membrane electrolyzers <i>via</i> operando synchrotron Fourier-transform infrared spectroscopy
dc.typeArticle de revueen_US
dc.identifier.doi10.1039/d3lc00380aen_US
dc.subject.halSciences de l'ingénieur [physics]en_US
bordeaux.journalLab on a Chipen_US
bordeaux.page4002 - 4009en_US
bordeaux.volume23en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.issue18en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Lab%20on%20a%20Chip&amp;rft.date=2023&amp;rft.volume=23&amp;rft.issue=18&amp;rft.spage=4002%20-%204009&amp;rft.epage=4002%20-%204009&amp;rft.au=KRAUSE,%20Kevin&amp;GARCIA,%20Marine&amp;MICHAU,%20Dominique&amp;CLISSON,%20G%C3%A9rald&amp;BILLINGHURST,%20Brant&amp;rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée