Afficher la notice abrégée

hal.structure.identifierEcole de Technologie Supérieure [Montréal] [ETS]
dc.contributor.authorIGNATOWICZ, Kevin
hal.structure.identifierEcole de Technologie Supérieure [Montréal] [ETS]
dc.contributor.authorMORENCY, François
hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
hal.structure.identifierÉquipe Calcul scientifique et Modélisation
dc.contributor.authorBEAUGENDRE, Heloise
dc.date.issued2023-10-15
dc.description.abstractEnExperimental and numerical fluid dynamics studies highlight a change of flow structure in the presence of surface roughness. The changes involve both wall heat transfer and skin friction, and are mainly restricted to the inner region of the boundary layer. Aircraft in-flight icing is a typical application where rough surfaces play an important role in the airflow structure and the subsequent ice growth. The objective of this work is to investigate how surface roughness is tackled in RANS with wall resolved boundary layers for aeronautics applications, with a focus on ice-induced roughness. The literature review shows that semi-empirical correlations were calibrated on experimental data to model flow changes in the presence of roughness. The correlations for RANS do not explicitly resolve the individual roughness. They principally involve turbulence model modifications to account for changes in the velocity and temperature profiles in the near-wall region. The equivalent sand grain roughness (ESGR) approach emerges as a popular metric to characterize roughness and is employed as a length scale for the RANS model. For in-flight icing, correlations were developed, accounting for both surface geometry and atmospheric conditions. Despite these research efforts, uncertainties are present in some specific conditions, where space and time roughness variations make the simulations difficult to calibrate. Research that addresses this gap could help improve ice accretion predictions.
dc.language.isoen
dc.publisherMDPI
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enRANS
dc.subject.enheat transfer
dc.subject.enroughness
dc.subject.enaircraft ice accretion
dc.subject.enCFD
dc.subject.enequivalent sand grain roughness
dc.title.enSurface Roughness in RANS Applied to Aircraft Ice Accretion Simulation: A Review
dc.typeArticle de revue
dc.identifier.doi10.3390/fluids8100278
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
dc.subject.halInformatique [cs]/Modélisation et simulation
dc.subject.halPhysique [physics]/Mécanique [physics]/Thermique [physics.class-ph]
bordeaux.journalFluids
bordeaux.page278
bordeaux.volume8
bordeaux.issue10
bordeaux.peerReviewedoui
hal.identifierhal-04359324
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04359324v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Fluids&rft.date=2023-10-15&rft.volume=8&rft.issue=10&rft.spage=278&rft.epage=278&rft.au=IGNATOWICZ,%20Kevin&MORENCY,%20Fran%C3%A7ois&BEAUGENDRE,%20Heloise&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée