Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierNicholas School of the Environment
dc.contributor.authorNAKAD, M.
hal.structure.identifierDuke University [Durham]
dc.contributor.authorWITELSKI, T.
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorDOMEC, Jean-Christophe
ORCID: 0000-0003-0478-2559
IDREF: 195495667
dc.contributor.authorSEVANTO, S.
hal.structure.identifierNicholas School of the Environment
dc.contributor.authorKATUL, G.
dc.date.accessioned2023-11-30T14:54:28Z
dc.date.available2023-11-30T14:54:28Z
dc.date.issued2021-04-25
dc.identifier.issn0022-1120en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/186279
dc.description.abstractEnSucrose is among the main products of photosynthesis that are deemed necessary for plant growth and survival. It is produced in the mesophyll cells of leaves and translocated to different parts of the plant through the phloem. Progress in understanding this transport process remains fraught with experimental difficulties, thereby prompting interest in theoretical approaches and laboratory studies. The Munch pressure and mass flow model is one of the accepted hypotheses describing the physics of sucrose transport in the phloem. It is based on osmosis creating an energy potential difference between the source and the sink. The flow responding to this energy potential is assumed laminar and described by the Hagen-Poiseuille equation. This study revisits such osmotically driven flows in tubes with membrane walls by including the effects of Taylor dispersion on mass transport. This effect has been overlooked in phloem flow studies. Taylor dispersion can increase the effective transport of solutes by increasing the apparent diffusion coefficient. It is shown that, in addition to the conventional diffusive correction derived for impermeable tube walls, a new adjustment to the mean advective terms arises because of osmotic effects. Because the molecular Schmidt number is very large for sucrose in water, the sucrose front speed and travel times have a direct dependence on the Peclet number for different ranges of the Munch number. This study establishes upper limits on expected Taylor dispersion enhancement of sucrose transport.
dc.language.isoENen_US
dc.subject.enbiological fluid dynamics
dc.subject.enlow-Reynolds-number flows
dc.subject.enlubrication theory
dc.title.enTaylor dispersion in osmotically driven laminar flows in phloem
dc.title.alternativeJ Fluid Mechen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1017/jfm.2021.56en_US
dc.subject.halSciences de l'environnementen_US
dc.subject.halSciences du Vivant [q-bio]en_US
bordeaux.journalJournal of Fluid Mechanicsen_US
bordeaux.page1-26en_US
bordeaux.volume913en_US
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391en_US
bordeaux.institutionBordeaux Sciences Agroen_US
bordeaux.institutionINRAEen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-03167387
hal.version1
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Fluid%20Mechanics&rft.date=2021-04-25&rft.volume=913&rft.spage=1-26&rft.epage=1-26&rft.eissn=0022-1120&rft.issn=0022-1120&rft.au=NAKAD,%20M.&WITELSKI,%20T.&DOMEC,%20Jean-Christophe&SEVANTO,%20S.&KATUL,%20G.&rft.genre=article


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record