High-pressure drop rates in solid-state batch one-step scCO2 foaming of acrylic polymers: A way to stabilize the structure of micro-nano foams
hal.structure.identifier | Team 1 LCPO : Polymerization Catalyses & Engineering | |
dc.contributor.author | HAURAT, Margaux | |
hal.structure.identifier | Institut de Mécanique et d'Ingénierie [I2M] | |
dc.contributor.author | ANGUY, Yannick | |
hal.structure.identifier | Institut de Mécanique et d'Ingénierie [I2M] | |
dc.contributor.author | GABORIEAU, Cécile | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | AUBERT, Guillaume | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | AYMONIER, Cyril | |
hal.structure.identifier | Team 1 LCPO : Polymerization Catalyses & Engineering | |
dc.contributor.author | DUMON, Michel | |
dc.date.issued | 2023 | |
dc.identifier.issn | 0009-2509 | |
dc.description.abstractEn | One-step solid-state batch scCO2 foaming is used with the target of achieving acrylic polymer micro-nano foams. Foaming is triggered by an average pressure drop (APDR), covering two decades, from 0.3 to 30 MPa.s−1. This study principally addresses the combined beneficial effects of block copolymer addition (BCP, here denoted as MAM) and high APDR. Numerous subtle kinetic parameters actually interplay and compete in the production of the final foams. In particular, the material effective temperature, the effective glass transition temperature of the plasticized system and the instantaneous PDR are physical quantities each having their own kinetics during foaming. The resulting foam morphologies are quantified by SEM microscopy and image analysis. A high APDR and the presence of BCP are shown to play a key role in the final structure of the foams. Over the scrutinized range of saturation temperature (40 °C to 60 °C i.e. rather ‘low’ temperatures in the CO2 supercritical state), the APDR is the main factor for significantly reducing cell size and increasing nuclei density in foams from neat PMMA. In the block copolymer approach, increasing the APDR is of secondary importance as the targeted reduction of the porosity dimensions and augmentation of nuclei density are mostly the consequence of MAM presence. In this latter case, increasing the APDR still promotes the ‘efficiency’ of the BCP nucleants. A real efficient nucleation activity of MAM additive is observed at a very high APDR (30 MPa.s−1), leading to monomodal homogeneous distribution of tiny pores in nearly nanosized foams. At lower APDR, an interesting reproducible double porosity (foams containing intra-wall and inter-wall pores) is detected in PMMA/MAM systems. In such double porosity foams, benefits from the Knudsen effect achieved within well expanded local domains (showing micron-sized pores) may remain meaningful thanks to a locally poorly expanded nanoporous thick solid skeleton encapsulating these local domains. Thereby, the radiative thermal conduction can be minimized and does not override the conductive component at the sample scale. This work provides further insight on acrylic polymer BCP foams influenced by different kinetics. | |
dc.description.sponsorship | Mousses Organiques Nano Structurées, dans la gamme des Micro et Nano porosités, présentant des Propriétés Multi Fonctionnelles, et fabriquées par un Procédé Continu - ANR-18-CE06-0030 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Supercritical carbon dioxide | |
dc.subject.en | Micro-nano foams | |
dc.subject.en | One-step batch foaming | |
dc.subject.en | High-pressure drop rate | |
dc.subject.en | Acrylic polymers | |
dc.subject.en | Quantitative structural analysis | |
dc.subject.en | Foaming process | |
dc.subject.en | Thermal insulation | |
dc.subject.en | Supercritical carbon dioxide | |
dc.title.en | High-pressure drop rates in solid-state batch one-step scCO2 foaming of acrylic polymers: A way to stabilize the structure of micro-nano foams | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.ces.2023.119099 | |
dc.subject.hal | Chimie/Polymères | |
dc.subject.hal | Chimie/Génie chimique | |
bordeaux.journal | Chemical Engineering Science | |
bordeaux.page | 119099 | |
bordeaux.volume | 281 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-04186228 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-04186228v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Chemical%20Engineering%20Science&rft.date=2023&rft.volume=281&rft.spage=119099&rft.epage=119099&rft.eissn=0009-2509&rft.issn=0009-2509&rft.au=HAURAT,%20Margaux&ANGUY,%20Yannick&GABORIEAU,%20C%C3%A9cile&AUBERT,%20Guillaume&AYMONIER,%20Cyril&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |